首页> 外文OA文献 >Algorithmic and implementation aspects of on-line calibration of Dynamic Traffic Assignment
【2h】

Algorithmic and implementation aspects of on-line calibration of Dynamic Traffic Assignment

机译:动态交通分配在线校准的算法和实现方面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis compares alternative and proposes new candidate algorithms for the online calibration of Dynamic Traffic Assignment (DTA). The thesis presents two formulations to on-line calibration: 1) The classical statespace formulation and 2) The direct optimization formulation. Extended Kalman Filter (EKF) is presented and validated under the state-space formulation. Pattern Search (PS), Conjugate Gradient Method (CG) and Gradient Descent (GD) are presented and validated under the direct optimization formulation. The feasibility of the approach is demonstrated by showing superior accuracy performance over alternative DTA model with limited calibration capabilities. Although numerically promising, the computational complexity of these base-line algorithms remain high and their application to large networks is still questionable. To address the issue of scalability, this thesis proposes novel extensions of the aforementioned GD and EKF algorithms. On the side of algorithmic advancement, the Partitioned Simultaneous Perturbation (PSP) method is proposed to overcome the computational burden associated with the Jacobian approximation within GD and EKF algorithms. PSP-GD and PSP-EKF prove to be capable of producing prediction results that are comparable to that of the GD and EKF, despite achieving speed performance that are orders of magnitude faster. On the side of algorithmic implementation, the computational burden of EKF and GD are distributed onto multiple processors. The feasibility and effectiveness of the Para-GD and Para-EKF algorithms are demonstrated and it is concluded that that distributed computing significantly increases the overall calibration speed.
机译:本文对替代方案进行了比较,提出了动态交通分配(DTA)在线标定的新候选算法。本文提出了两种在线校准的公式:1)经典状态空间公式和2)直接优化公式。提出了扩展卡尔曼滤波器(EKF),并根据状态空间公式对其进行了验证。提出了模式搜索(PS),共轭梯度法(CG)和梯度下降(GD),并通过直接优化公式对其进行了验证。通过显示具有优于有限校准能力的替代DTA模型的卓越精度性能,证明了该方法的可行性。尽管在数值上有希望,但是这些基线算法的计算复杂性仍然很高,并且它们在大型网络中的应用仍然值得怀疑。为了解决可伸缩性问题,本文提出了上述GD和EKF算法的新颖扩展。在算法发展方面,提出了一种分块同时扰动(PSP)方法,以克服GD和EKF算法中与雅可比近似相关的计算负担。 PSP-GD和PSP-EKF被证明能够产生与GD和EKF相当的预测结果,尽管其速度性能要快几个数量级。在算法实现方面,EKF和GD的计算负担分布在多个处理器上。证明了Para-GD和Para-EKF算法的可行性和有效性,并得出结论,分布式计算显着提高了整体校准速度。

著录项

  • 作者

    Huang Enyang;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号