首页> 外文期刊>IEEE Transactions on Intelligent Transportation Systems >Nonlinear Kalman Filtering Algorithms for On-Line Calibration of Dynamic Traffic Assignment Models
【24h】

Nonlinear Kalman Filtering Algorithms for On-Line Calibration of Dynamic Traffic Assignment Models

机译:动态交通分配模型在线校准的非线性卡尔曼滤波算法

获取原文
获取原文并翻译 | 示例

摘要

An online calibration approach that jointly estimates demand and supply parameters of dynamic traffic assignment (DTA) systems is presented and empirically validated through an extensive application. The problem can be formulated as a nonlinear state-space model. Because of its nonlinear nature, the resulting model cannot be solved by the Kalman filter, and therefore, nonlinear extensions need to be considered. The following three extensions to the Kalman filtering algorithm are presented: 1) the extended Kalman filter (EKF); 2) the limiting EKF (LimEKF); and 3) the unscented Kalman filter. The solution algorithms are applied to the on-line calibration of the state-of-the-art DynaMIT DTA model, and their use is demonstrated in a freeway network in Southampton, U.K. The LimEKF shows accuracy that is comparable to that of the best algorithm but with vastly superior computational performance. The robustness of the approach to varying weather conditions is demonstrated, and practical aspects are discussed.
机译:提出了一种在线校准方法,该方法可以联合估算动态交通分配(DTA)系统的需求和供应参数,并通过广泛的应用进行经验验证。该问题可以表述为非线性状态空间模型。由于其非线性性质,所得模型无法通过卡尔曼滤波器求解,因此,需要考虑非线性扩展。提出了卡尔曼滤波算法的以下三个扩展:1)扩展卡尔曼滤波器(EKF); 2)极限EKF(LimEKF);和3)无味的卡尔曼滤波器。该解决方案算法已应用于最先进的DynaMIT DTA模型的在线校准,并且已在英国南安普敦的高速公路网络中演示了其使用。LimEKF的准确性与最佳算法相当但具有出色的计算性能。证明了该方法在变化的天气条件下的鲁棒性,并讨论了实际方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号