首页> 外文OA文献 >The value of automated fare collection data for transit planning : an example of rail transit OD matrix estimation
【2h】

The value of automated fare collection data for transit planning : an example of rail transit OD matrix estimation

机译:用于运输计划的自动收费数据的价值:轨道交通OD矩阵估计的一个例子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditionally, transit agencies across the world have relied on traveler surveys and manual counts to inform many of their service and operations planning decisions. Today, many agencies can add to their existing planning toolbox the data obtained from new Automated Fare Collection (AFC) technologies. By adding this dataset, transit agencies can boost their analytical capabilities and deal with some planning questions that they previously could not easily address. In fact, while with surveys and manual counts transit agencies were able to form a reasonable snapshot of existing demand on their transit system, with accurate AFC data, planners should be able to get a detailed, continuous and accurate vision of the travel behavior of their customers, at a fraction of the prior cost. Nevertheless, there are some technical and operational issues that can affect the quality of AFC data that must be addressed before the new dataset can be fully integrated into the planning process of transit agencies. This research begins to explore these issues in general as well as in the context of the transit system serving London in the United Kingdom. In particular, it identifies bias in the AFC entry and exit data and develops a methodology for building an unbiased estimate of existing travel patterns on the London Underground.
机译:传统上,世界各地的运输机构都依靠旅行者调查和人工计数来告知许多服务和运营计划决策。如今,许多机构可以将从新的自动票价收集(AFC)技术获得的数据添加到其现有的计划工具箱中。通过添加此数据集,运输机构可以提高分析能力,并处理以前无法轻松解决的一些计划问题。实际上,尽管通过调查和人工计数,过境机构能够利用准确的AFC数据形成其过境系统上现有需求的合理快照,但计划人员仍应能够详细,连续且准确地了解其出行行为客户,只需先前成本的一小部分。尽管如此,在将新数据集完全整合到过境机构的计划过程中之前,仍然存在一些会影响AFC数据质量的技术和运营问题。这项研究从总体上以及在为英国伦敦提供服务的公交系统的背景下开始探讨这些问题。尤其是,它可以识别出AFC进出数据中的偏差,并开发一种方法来建立对伦敦地铁现有出行方式的无偏估计。

著录项

  • 作者

    Gordillo Fabio;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号