首页> 外文OA文献 >Decomposition of hydrogen peroxide and organic compounds in the presence of iron and iron oxides
【2h】

Decomposition of hydrogen peroxide and organic compounds in the presence of iron and iron oxides

机译:在铁和铁氧化物存在下分解过氧化氢和有机化合物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most advanced oxidation processes use the hydroxyl radical (OH) to treat pollutants found in wastewater and contaminated aquifers because OH reacts with numerous compounds at near diffusion-limited rates. OH can be made by reacting hydrogen peroxide (H202) with either Fe(II) (the Fenton reaction), Fe(1), or iron oxide. This dissertation investigated the factors that influence the decomposition rates of H202 and organic compounds, as well as the generation rate of -OH (VoH), in the presence of dissolved Fe(IH) and iron oxide. The Fe(III)-initiated chain reaction could be the dominant mechanism for the decomposition of H202 and organic compounds. The degradation rates of H14COOH, an OH probe, and H202 were measured in experiments at pH 4 containing either dissolved Fe(III) or ferrihydrite. Combined with the results from experiments using a radical chain terminator, we concluded that a solution chain reaction was important only in the Fe(III) system. In the ferrihydrite system the amount of dissolved Fe was insufficient to effectively propagate the chain reaction. In addition, a nonradical producing H202 loss pathway exists at the oxide surface. The oxidation rate of any dissolved organic compound can be predicted from VOH if the main sinks of -OH in the solution are known. Experiments using H14COOH and ferrihydrite, goethite, or hematite showed that VOH was proportional to the product of the concentrations of surface area and H202. Based on these results, a model was created for predicting the pseudo-first-order oxidation rate coefficients of dissolved organic compounds (korg) in systems containing iron oxide and H202. While our model successfully predicted korg in aquifer sand experiments, it yielded mixed results when compared to measurements from previously published studies.
机译:大多数先进的氧化工艺都使用羟基自由基(OH)处理废水和受污染的含水层中发现的污染物,因为OH与许多化合物的反应接近扩散极限。 OH可以通过使过氧化氢(H2O2)与Fe(II)(Fenton反应),Fe(1)或氧化铁反应来制备。本文研究了在溶解的Fe(IH)和氧化铁存在下影响H 2 O 2和有机化合物分解速率以及-OH(VoH)生成速率的因素。 Fe(III)引发的链反应可能是H2O2和有机化合物分解的主要机理。在含有溶解的Fe(III)或亚铁酸盐的pH 4的实验中测量了H14COOH,OH探针和H2O2的降解速率。结合使用自由基链终止剂的实验结果,我们得出结论,溶液链反应仅在Fe(III)系统中很重要。在三水铁矿体系中,溶解的铁量不足以有效地传播链反应。另外,在氧化物表面存在产生非自由基的H 2 O 2损失途径。如果已知溶液中-OH的主要吸收剂,则可以从VOH预测任何溶解的有机化合物的氧化速率。使用H14COOH和三水铁矿,针铁矿或赤铁矿的实验表明,VOH与表面积浓度和H2O2的乘积成正比。基于这些结果,创建了一个模型,用于预测包含氧化铁和H 2 O 2的系统中溶解的有机化合物的假一阶氧化速率系数(korg)。尽管我们的模型在含水层砂实验中成功预测了korg,但与以前发表的研究的测量结果相比,它得出的结果好坏参半。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号