Advances in monitoring technology (e.g., sensors) and an increased demand for online information processing have given rise to a new class of applications that require continuous, low-latency processing of large-volume data streams. These "stream processing applications" arise in many areas such as sensor-based environment monitoring, financial services, network monitoring, and military applications. Because traditional database management systems are ill-suited for high-volume, low-latency stream processing, new systems, called stream processing engines (SPEs), have been developed. Furthermore, because stream processing applications are inherently distributed, and because distribution can improve performance and scalability, researchers have also proposed and developed distributed SPEs. In this dissertation, we address two challenges faced by a distributed SPE: (1) faulttolerant operation in the face of node failures, network failures, and network partitions, and (2) federated load management. For fault-tolerance, we present a replication-based scheme, called Delay, Process, and Correct (DPC), that masks most node and network failures.
展开▼