Microfluidic science is currently going through a transition from the research laboratories to the industry as the applications and technologies increase and improve. One of the challenges of this transition is the automated production of microfluidic devices for competitive costs and production rates. The objective of this thesis was to design and achieve a fully automated production of polymer-based microfluidic devices. The manipulation must be adapted to all the processing stations and its position repeatability must be within a couple of tens of microns. Based on overall consistency and modularity criterions, we selected a SCARA robot associated with a custom vacuum chuck end effector. The position repeatability was improved by an alignment strategy based on a compliant kinematic coupling. For an ideal part, this strategy divides the position uncertainty of the manipulator by a factor of 5. A model of the flow of materials in the production cell has been optimized to maximize the production rate: the shortest value of the Takt time reaches 280s.
展开▼