首页> 外文OA文献 >Fabricating sub-wavelength periodic nanostructures
【2h】

Fabricating sub-wavelength periodic nanostructures

机译:制造亚波长周期性纳米结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Periodic nanostructures have many exciting applications, including high-energy spectroscopy, patterned magnetic media, photonic crystals, and templates for self-assembly. Interference lithography (IL) is an attractive method for fabricating such structures, as it offers several advantages including large exposure area and high spatial-phase coherence. However, the spatial resolution of IL is limited, and the smallest attainable period is roughly half the wavelength of the light used. To overcome this wavelength-limited resolution, we have developed a multilevel interference lithography process that is capable of fabricating sub-wavelength periodic nanostructures over large areas. In this process, multiple grating levels with different phase-offsets are overlaid and spatial-phase aligned to a common reference grating. Each grating level is pattern-transferred into a single hard mask layer, resulting in spatial-frequency multiplication. To ensure high grating overlay accuracy, each grating level is aligned to the reference grating with various interferometric techniques. In addition, an image-reversal process with plasma etch trimming was developed to control the linewidth of each grating level to nanometer-repeatability. Extensive optical simulations using rigorous coupled-wave analysis were used to examine the intensity distribution of exposures over multilayer periodic structures. The immediate goal of this work is to extend the wavelength-limited resolution of interference lithography with high precision metrology and well-controlled fabrication processes. Using this multilevel process, we have successfully fabricated 50 nm-period gratings using light with 351.1 nm wavelength. This process presents a general scheme for overlaying periodic nanostructures, and can be used to fabricate more complex 2D and 3D geometries.
机译:周期性纳米结构具有许多令人兴奋的应用,包括高能光谱法,带图案的磁性介质,光子晶体以及用于自组装的模板。干涉光刻法(IL)是制造此类结构的一种有吸引力的方法,因为它具有许多优势,包括大的曝光面积和高的空间相位相干性。然而,IL的空间分辨率是有限的,并且最小的可获得周期大约是所使用的光的波长的一半。为了克服这种波长受限的分辨率,我们开发了一种多级干涉光刻工艺,该工艺能够在大面积上制造亚波长周期纳米结构。在此过程中,将具有不同相位偏移的多个光栅级别叠加,并将空间相位对齐到公共参考光栅。每个光栅级被图案转移到单个硬掩模层中,从而导致空间频率倍增。为了确保高的光栅覆盖精度,可以使用各种干涉技术将每个光栅级别与参考光栅对齐。此外,还开发了利用等离子蚀刻修整的图像反转工艺,以将每个光栅级的线宽控制到纳米重复性。使用严格的耦合波分析进行了广泛的光学模拟,以检查多层周期结构上曝光的强度分布。这项工作的近期目标是利用高精度计量技术和良好控制的制造工艺来扩展干涉光刻的波长限制分辨率。使用这种多级工艺,我们已经成功地使用351.1 nm波长的光制造了50 nm周期的光栅。此过程提出了一种覆盖周期性纳米结构的通用方案,可用于制造更复杂的2D和3D几何形状。

著录项

  • 作者

    Chang Chih-Hao 1980-;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号