首页> 外文OA文献 >High resolution imaging and lithography using interference of light and surface plasmon waves
【2h】

High resolution imaging and lithography using interference of light and surface plasmon waves

机译:使用光和表面等离子体波的干涉的高分辨率成像和光刻

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The resolution of optical imaging and lithography is limited by the wave nature of light. Studies have been undertaken to overcome the diffraction limit for imaging and lithography. In our lab, the standing wave surface plasmon resonance fluorescence (SW-SPRF) microscopy was developed. It is a combination of standing wave total internal reflection fluorescence (SW-TIRF), one of structured illumination techniques, with surface plasmon resonance (SPR). The SW-TIRF approach decreases the excitation wavelength by interfering two coherent light rays on the substrate and producing an evanescent standing wave field between the object and a high refractive index substrate. Evanescent standing wave illumination generates a sinusoidal interference pattern with 2n times higher-spatial frequency than original light, where n is the refractive index of the substrate allowing higher lateral resolution. Surface plasmon is generated by reflecting a light on the gold surface through the cover glass at a specific angle inducing collective excitation of electrons in the metal. The SPR contributes a better signal-to-noise ratio by inducing an enhanced evanescent electric field to excite fluorophores. With the SW-TIRF instrument, about 100 nm resolution was obtained. In this thesis, we aim to produce less than 50 nm resolution lithography and imaging using corrugated gold surface. The induction of surface plasmon wave with large wave number is made possible by the sinusoidal gold surface allowing wave number matching between the excitation light and the surface plasmon wave. This wave number matching requires proper optimization of parameters like grating constant, perturbation depth, incidence angle of the beam, and excitation wavelength. The fabrication of the corrugated gold surface would be done by e-beam etching with varying parameters.
机译:光学成像和光刻的分辨率受到光的波特性的限制。已经进行研究以克服成像和光刻的衍射极限。在我们的实验室中,开发了驻波表面等离子体共振荧光(SW-SPRF)显微镜。它是结构化照明技术之一的驻波全内反射荧光(SW-TIRF)与表面等离子体共振(SPR)的结合。 SW-TIRF方法通过在基板上干涉两条相干光线并在物体和高折射率基板之间产生an逝的驻波场来减小激发波长。逝的驻波照明产生的正弦干涉图样的空间频率是原始光的2n倍,其中n是允许更高横向分辨率的基板折射率。表面等离子体激元是通过以一定角度通过盖玻片在金表面反射光而引起金属中电子的集体激发而产生的。 SPR通过诱导增强的e逝电场激发荧光团,从而提供了更好的信噪比。使用SW-TIRF仪器,可获得约100 nm的分辨率。在本文中,我们的目标是使用波纹状金表面产生小于50 nm分辨率的光刻和成像。正弦形金表面允许激发光与表面等离激元波之间的波数匹配,从而可以诱导大波数的表面等离激元波。这种波数匹配需要适当优化参数,例如光栅常数,摄动深度,光束的入射角和激发波长。波纹金表面的制造将通过具有可变参数的电子束蚀刻来完成。

著录项

  • 作者

    Kim Yang-Hyo;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号