首页> 外文OA文献 >Determination of drivers of stock-out performance of retail stores using data mining techniques
【2h】

Determination of drivers of stock-out performance of retail stores using data mining techniques

机译:使用数据挖掘技术确定零售店的缺货绩效驱动因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research applies data mining techniques to give a picture of the interaction of performance variables such as between stock-outs and store attributes, and stock-outs and other variables including store sales, income and demographic data, as well as various aspects of inventory management data. This research uses three data mining techniques: multiple ordinary-least-squares (OLS) regression, logistic regression and data clustering. The first part of the research evaluates how the effect of stock-outs at the distribution center (DC) level impacts the downstream sales at the store-level. Using multiple regression techniques, it was observed that stock-outs at the distribution center level have a detrimental impact on the sales at the retail store level. The second part of the project focuses on understanding the relationships of store stock-out performance to various drivers. The variables that were determined to be drivers of store performance include income level of the area, demographic profile, years the store has been in operation, day of the week delivery from distribution center, distance of store from the distribution center and average inventory-on-hand. Using data clustering techniques, worse performing and good performing clusters of stores were identified. The two worse performing clusters were 'Low-Income, Newer' stores and 'Newer, Further from DC' stores. The three good performing clusters were 'High-Income, High-Inventory' stores, 'Closer to DC, Older' Stores and 'High-Income, Smaller' stores.
机译:这项研究应用数据挖掘技术来描绘性能变量(例如,缺货和商店属性之间,以及缺货和其他变量,包括商店销售,收入和人口统计数据以及库存管理的各个方面)之间的交互作用图数据。这项研究使用了三种数据挖掘技术:多个普通最小二乘(OLS)回归,逻辑回归和数据聚类。研究的第一部分评估配送中心(DC)级别的缺货影响如何影响商店级别的下游销售。使用多种回归技术,可以发现配送中心级别的缺货对零售商店级别的销售有不利影响。该项目的第二部分着重于理解商店缺货绩效与各种驱动因素之间的关系。确定为影响商店绩效的变量包括区域收入水平,人口统计资料,商店营业时间,每周从配送中心交付的日期,距离配送中心的商店距离以及平均库存-手。使用数据聚类技术,可以识别出性能较差和性能良好的商店集群。表现最差的两个集群是“低收入,较新”商店和“较新,较远的DC”商店。三个表现良好的集群是“高收入,高库存”商店,“距离DC更近,较老”商店和“高收入,较小”商店。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号