首页> 外文OA文献 >Dynamical system modeling of a micro gas turbine engine
【2h】

Dynamical system modeling of a micro gas turbine engine

机译:微型燃气涡轮发动机的动力系统建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since 1995, MIT has been developing the technology for a micro gas turbine engine capable of producing tens of watts of power in a package less than one cubic centimeter in volume. The demo engine developed for this research has low and diabtic component performance and severe heat transfer from the turbine side to the compressor side. The goals of this thesis are developing a dynamical model and providing a simulation platform for predicting the microengine performance and control design, as well as giving an estimate of the microengine behavior under current design. The thesis first analyzes and models the dynamical components of the microengine. Then a nonlinear model, a linearized model, and corresponding simulators are derived, which are valid for estimating both the steady state and transient behavior. Simulations are also performed to estimate the microengine performance, which include steady states, linear properties, transient behavior, and sensor options. A parameter study and investigation of the startup process are also performed. Analysis and simulations show that there is the possibility of increasing turbine inlet temperature with decreasing fuel flow rate in some regions. Because of the severe heat transfer and this turbine inlet temperature trend, the microengine system behaves like a second-order system with low damping and poor linear properties. This increases the possibility of surge, over-temperature and over-speed. This also implies a potentially complex control system. The surge margin at the design point is large, but accelerating directly from minimum speed to 100% speed still causes surge. Investigation of the sensor options shows that temperature sensors have relatively fast response time but give multiple estimates of the engine state. Pressure sensors have relatively slow response time but they change monotonically with the engine state. So the future choice of sensors may be some combinations of the two. For the purpose of feedback control, the system is observable from speed, temperature, or pressure measurements. Parameter studies show that the engine performance doesn't change significantly with changes in either nozzle area or the coefficient relating heat flux to compressor efficiency. It does depend strongly on the coefficient relating heat flux to compressor pressure ratio. The value of the compressor peak efficiency affects the engine operation only when it is inside the range of the engine operation. Finally, parameter studies indicate that, to obtain improved transient behavior with less possibility of surge, over-temperature and over-speed, and to simplify the system analysis and design as well as the design and implementation of control laws, it is desirable to reduce the ratio of rotor mechanical inertia to thermal inertia, e.g. by slowing the thermal dynamics. This can in some cases decouple the dynamics of rotor acceleration and heat transfer. Several methods were shown to improve the startup process: higher start speed, higher start spool temperature, and higher start fuel flow input. Simulations also show that the efficiency gradient affects the transient behavior of the engine significantly, thereby effecting the startup process. Finally, the analysis and modeling methodologies presented in this thesis can be applied to other engines with severe heat transfer. The estimates of the engine performance can serve as a reference of similar engines as well.
机译:自1995年以来,麻省理工学院一直在开发一种微型燃气涡轮发动机的技术,该技术能够在体积小于1立方厘米的包装中产生数十瓦的功率。为此研究开发的演示引擎具有低和糖尿病的部件性能,并且从涡轮机侧到压缩机侧的热量传递严重。本文的目的是开发一个动力学模型,并提供一个用于预测微引擎性能和控制设计的仿真平台,以及对当前设计下的微引擎行为进行估算。本文首先对微型发动机的动力部件进行了分析和建模。然后推导了非线性模型,线性化模型和相应的仿真器,它们对于估算稳态和瞬态行为均有效。还执行模拟以估计微引擎性能,其中包括稳态,线性特性,瞬态行为和传感器选项。还对启动过程进行了参数研究和调查。分析和模拟表明,在某些地区,随着燃油流量的降低,有可能提高涡轮机的入口温度。由于严重的热传递和涡轮进口温度趋势,微引擎系统的行为就像具有低阻尼和较差线性特性的二阶系统。这增加了电涌,过热和超速的可能性。这也意味着潜在的复杂控制系统。设计点的喘振裕度很大,但是直接从最小速度加速到100%速度仍会引起喘振。对传感器选项的研究表明,温度传感器具有相对较快的响应时间,但可以对发动机状态进行多次估算。压力传感器的响应时间相对较慢,但会随着发动机状态而单调变化。因此,传感器的未来选择可能是两者的某种组合。为了进行反馈控制,可以从速度,温度或压力测量中观察到该系统。参数研究表明,发动机的性能不会随着喷嘴面积或热通量与压缩机效率的系数的变化而显着变化。它确实很大程度上取决于将热通量与压缩机压力比相关的系数。压缩机峰值效率的值仅在其处于发动机运行范围内时才影响发动机运行。最后,参数研究表明,要获得改善的瞬态性能,以减少浪涌,过热和超速的可能性,并简化系统分析和设计以及控制律的设计和实现,就需要减少转子机械惯性与热惯性之比,例如通过减慢热动力学。在某些情况下,这会使转子加速和传热的动力学脱钩。显示了几种改善启动过程的方法:更高的启动速度,更高的启动阀芯温度和更高的启动燃油流量输入。仿真还表明,效率梯度会显着影响发动机的瞬态行为,从而影响启动过程。最后,本文提出的分析和建模方法可以应用于其他具有严重传热的发动机。发动机性能的估计值也可以用作类似发动机的参考。

著录项

  • 作者

    Liu Chunmeni 1970-;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号