首页> 外文OA文献 >Quantum key distribution over multicore fiber based on silicon photonics.
【2h】

Quantum key distribution over multicore fiber based on silicon photonics.

机译:基于硅光子学的多芯光纤量子密钥分配。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In contemporary society, communication security has become increasingly important. The security of the current cryptosystems, based on mathematical assumptions, will not be guaranteed when quantum computers become available [1]. This has spurred investigations into new security technologies based on quantum physics. In order to exchange secure information between users, quantum key distribution (QKD), a branch of Quantum Communications (QCs), provides good prospects for ultimate security based on the laws of quantum mechanics [2–7]. Most of QKD systems are implemented in a point-to-point link using bulky, discrete and expensive devices. Consequently, a large scale deployment of this technology has not been achieved. In a future scenario, where QCs will become standard technology, and where infrastructures like banks and government buildings, will be connected through a quantum network, different requirements in terms of key generation are needed. A solution may be represented by new technologies applied to quantum world. In particular multicore fiber (MCF) open a new scenario for quantum communications, from high-dimensional (HD) spatial entanglement generation, to HD QKD and multi-user key generations, to HD-entanglement distribution. Furthermore, MCFs are expected as a good candidate for overcoming the capacity limit of a current optical communication system, as example the record capacity of 661 Tbits/s was obtained last year with a 30-cores fiber [8]. Proof of concept experiment has already proved the coexistence of classical and quantum communications transmitted into different cores of MCF [9]. On the other hand, photonic integration has played a critical role in recent quantum information revolution by integrating functionalities of traditional discrete bulky components into ultra-compact chips [10, 11]. In fact, integrated photonic circuits provides excellent performances (compacts, good optical phase stability, access to new degrees of freedom), and are particularly suitable for the manipulation of quantum states. Some recent experiments have already demonstrated conventional binary QKD systems, using polarization and phase reference degrees of freedom [12, 13]. Moreover, by using integrated solution new high-dimensional quantum states can be generated and propagated. Based on compact silicon photonic integrated circuits, we here show how a MCF can be used for quantum communications protocols by proving decoy-state HD-QKD and multi-users quantum key generations.
机译:在当代社会中,通信安全已变得越来越重要。当量子计算机可用时,基于数学假设的当前密码系统的安全性将无法得到保证[1]。这刺激了对基于量子物理学的新安全技术的研究。为了在用户之间交换安全信息,量子通信(QC)的一个分支-量子密钥分发(QKD)为基于量子力学定律的终极安全性提供了良好的前景[2-7]。大多数QKD系统都是使用大型,离散和昂贵的设备在点对点链接中实现的。因此,尚未实现该技术的大规模部署。在将来的场景中,QC将成为标准技术,而银行和政府大楼等基础设施将通过量子网络进行连接,则在密钥生成方面需要不同的要求。解决方案可以用应用于量子世界的新技术来表示。特别是多芯光纤(MCF)为量子通信打开了一个新的场景,从高维(HD)空间纠缠生成到HD QKD和多用户密钥生成,再到HD纠缠分布。此外,MCF有望成为克服当前光通信系统容量限制的理想选择,例如,去年使用30芯光纤获得了661 Tbits / s的记录容量[8]。概念验证实验已经证明经典和量子通信并存到MCF的不同内核中是共存的[9]。另一方面,光子集成通过将传统的离散大体积组件的功能集成到超紧凑芯片中,在最近的量子信息革命中发挥了关键作用[10,11]。实际上,集成光子电路提供了出色的性能(紧凑,良好的光学相位稳定性,获得了新的自由度),并且特别适合于量子态的操纵。最近的一些实验已经证明了使用偏振和相位参考自由度的常规二进制QKD系统[12,13]。此外,通过使用集成解决方案,可以生成和传播新的高维量子态。我们基于紧凑型硅光子集成电路,在这里展示了如何通过证明诱骗态HD-QKD和多用户量子密钥世代来将MCF用于量子通信协议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号