首页> 外文OA文献 >An Adaptive Large Neighborhood Search-based Three-Stage Matheuristic for the Vehicle Routing Problem with Time Windows
【2h】

An Adaptive Large Neighborhood Search-based Three-Stage Matheuristic for the Vehicle Routing Problem with Time Windows

机译:基于时间窗车辆路径问题的自适应大邻域搜索三阶段matheuristic

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Vehicle Routing Problem with Time Windows (VRPTW) consist of determining a set of feasible vehicle routes to deliver goods to a set of customers using a hierarchical objective; first minimising the number of vehicles used and, second, the total driving distance.A three-stage method is proposed for the VRPTW. The first stage aims at minimising the number of vehicle used, whereas the second and third phase aims at minimising the travel distance. The first stage maintains an ejection pool with temporarily unserved customers, and tries to insert these customer into the existing solution. If a new candidate solution for the minimum number of vehicles is found, a route is removed and the customers from the route is placed in the ejection pool. If the heuristic terminates without finding a new candidate solution where all customers are served, the first stage returns the last found candidate solution that serves all the customers. The second stage usesan Adaptive Large Neighborhood Search (ALNS) algorithm to minimise the travel distance, during the second phase all of the generated routes are considered by solving a set cover problem. The ALNS algorithm uses 4 destroy operators, 2 repair operators and a local search method. The third stage isa Branch-Cut-and-Price (BCP) matheuristic which considers a reduced problem instance, with onlya small subset of the total arcs. This work contributes to the existing literature by integrating a set cover model with ALNS and by using BCP as a post-optimization procedure.
机译:带时间窗的车辆路径问题(VRPTW)包括使用分层目标确定一组可行的车辆路线,以将货物交付给一组客户。首先是最小化使用的车辆数量,其次是总行驶距离。针对VRPTW,提出了一种三阶段方法。第一阶段旨在最小化使用的车辆数量,而第二阶段和第三阶段旨在最小化行驶距离。第一阶段维护一个临时服务客户的弹出池,然后尝试将这些客户插入现有解决方案中。如果找到了最小车辆数量的新候选解决方案,则会删除一条路线,并将路线上的客户放置在弹出池中。如果试探法终止但没有找到为所有客户提供服务的新候选解决方案,则第一阶段将返回为所有客户提供服务的最后找到的候选解决方案。第二阶段使用自适应大邻域搜索(ALNS)算法来最小化行进距离,在第二阶段,通过解决集合覆盖问题来考虑所有生成的路线。 ALNS算法使用4个销毁运算符,2个修复运算符和一种本地搜索方法。第三阶段是分支价格法(BCP),它考虑了减少的问题实例,仅占总弧的一小部分。这项工作通过将集合覆盖模型与ALNS集成以及将BCP作为后优化程序来为现有文献做出了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号