首页> 外文OA文献 >Numerical Multilevel Upscaling for Incompressible Flow in Reservoir Simulation: An Element-based Algebraic Multigrid (AMGe) Approach
【2h】

Numerical Multilevel Upscaling for Incompressible Flow in Reservoir Simulation: An Element-based Algebraic Multigrid (AMGe) Approach

机译:油藏模拟中不可压缩流动的数值多级升尺度:基于单元的代数多重网格(amGe)方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the application of a finite element numerical upscaling technique to the incompressible two-phase porous media total velocity formulation. Specifically, an element agglomeration based Algebraic Multigrid (AMGe) technique with improved approximation proper ties [37] is used, for the first time, to generate upscaled and accurate coarse systems for the reservoir simulation equations. The upscaling technique is applied to both the mixed system for velocity and pressure and to the hyperbolic transport equations providing fully upscaled systems. By introducing additional degrees of freedom associated with non-planar interfaces between agglomerates, the coarse velocity space has guaranteed approximation properties. The employed AMGe technique provides coarse spaces with desirable local mass conservation and stability properties analogous to the original pair of Raviart-Thomas and piecewise discontinuous polynomial spaces, resulting in strong mass conservation for the upscaled systems. Due to the guaranteed approximation properties and the generic nature of the AMGe method, recursive multilevel upscaling is automatically obtained. Furthermore, this technique works for both structured and unstructured meshes. Multiscale Mixed Finite Elements exhibit accuracy for general unstructured meshes but do not in general lead to nested hierarchy of spaces. Multiscale multilevel mimetic finite differences generate nested spaces but lack the adaptivity of the flux representation on coarser levels that the proposed AMGe approach offers. Thus, the proposed approach can be seen as a rigorous bridge that merges the best properties of these two existing methods. The accuracy and stability of the studied multilevel AMGe upscaling technique is demonstrated on two challenging test cases.
机译:我们研究了有限元数值放大技术在不可压缩两相多孔介质总速度公式中的应用。具体而言,首次使用具有改进的近似属性[37]的基于元素集聚的代数多重网格(AMGe)技术来生成用于储层模拟方程的放大且精确的粗体系。升级技术既应用于速度和压力的混合系统,又应用于提供完全升级系统的双曲输运方程式。通过引入与附聚物之间非平面界面相关的附加自由度,粗速度空间具有保证的近似特性。所采用的AMGe技术为粗糙空间提供了理想的局部质量守恒性和稳定性,类似于原始的Raviart-Thomas对和分段不连续多项式空间,从而为高档系统提供了强大的质量守恒。由于有保证的近似性质和AMGe方法的一般性质,因此会自动获得递归多级升频。此外,该技术适用于结构化和非结构化网格。多尺度混合有限元对一般的非结构化网格显示出精度,但通常不会导致嵌套的空间层次。多尺度多级模拟有限差分会生成嵌套空间,但缺少拟议AMGe方法提供的在更粗糙级别上的磁通表示适应性。因此,所提出的方法可以看作是融合了这两种现有方法的最佳特性的严格桥梁。在两个具有挑战性的测试案例中证明了所研究的多级AMGe升频技术的准确性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号