首页> 外文OA文献 >Multilevel techniques lead to accurate numerical upscaling and scalable robust solvers for reservoir simulation
【2h】

Multilevel techniques lead to accurate numerical upscaling and scalable robust solvers for reservoir simulation

机译:多级技术可实现精确的数值放大和可扩展的稳健求解器,用于油藏模拟

摘要

This paper demonstrates an application of element-based Algebraic Multigrid (AMGe) technique developed at LLNL () to the numerical upscaling and preconditioning of subsurface porous media flow problems. The upscaling results presented here are further extension of our recent work in . The AMGe approach is well suited for the solution of large problems coming from finite element discretizations of systems of partial differential equations. The AMGe technique from allows for the construction of operator-dependent coarse (upscaled) models and guarantees approximation properties of the coarse velocity spaces by introducing additional degrees of freedom associated with non-planar interfaces between agglomerates. This leads to coarse spaces which maintain the specific desirable properties of the original pair of Raviart-Thomas and piecewise discontinuous polynomial spaces. These coarse spaces can be used both as an upscaling tool and as a robust and scalable solver. The methods employed in the present paper have provable O(N) scaling and are particularly well suited for modern multicore architectures, because the construction of the coarse spaces by solving many small local problems offers a high level of concurrency in the computations. Numerical experiments demonstrate the accuracy of using AMGe as an upscaling tool and comparisons are made to more traditional flow-based upscaling techniques. The efficient solution of both the original and upscaled problem is also addressed, and a specialized AMGe preconditioner for saddle point problems is compared to state-of-the-art algebraic multigrid block preconditioners. In particular, we show that for the algebraically upscaled systems, our AMGe preconditioner outperforms traditional solvers. Lastly, parallel strong scaling of a distributed memory implementation of the reservoir simulator is demonstrated.
机译:本文演示了在LLNL()开发的基于元素的代数多重网格(AMGe)技术在地下多孔介质流动问题的数值放大和预处理中的应用。这里显示的提升结果是对我们最近在的工作的进一步扩展。 AMGe方法非常适合解决偏微分方程系统的有限元离散化带来的大问题。 AMGe技术从开始就可以构建依赖于操作员的粗(高阶)模型,并通过引入与团聚物之间的非平面界面相关的附加自由度,来保证粗速度空间的近似特性。这导致维持原始Raviart-Thomas对和分段不连续多项式空间的特定理想特性的粗糙空间。这些粗略空间既可以用作扩展工具,也可以用作健壮且可扩展的求解器。本文中使用的方法具有可证明的O(N)缩放比例,并且特别适合于现代多核体系结构,因为通过解决许多小局部问题来构造粗略空间在计算中提供了高水平的并发性。数值实验证明了将AMGe用作放大工具的准确性,并与更传统的基于流量的放大技术进行了比较。还解决了原始问题和高级问题的有效解决方案,并将专用于鞍点问题的AMGe预处理器与最新的代数多网格块预处理器进行了比较。特别是,我们表明,对于代数上乘的系统,我们的AMGe预处理器优于传统的求解器。最后,展示了储层模拟器的分布式内存实现的并行强缩放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号