首页> 外文OA文献 >Non-negative Matrix Factorization for Binary Data
【2h】

Non-negative Matrix Factorization for Binary Data

机译:二进制数据的非负矩阵分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose the Logistic Non-negative Matrix Factorization for decomposition of binary data. Binary data are frequently generated in e.g. text analysis, sensory data, market basket data etc. A common method for analysing non-negative data is the Non-negative Matrix Factorization, though this is in theory not appropriate for binary data, and thus we propose a novel Non-negative Matrix Factorization based on the logistic link function. Furthermore we generalize the method to handle missing data. The formulation of the method is compared to a previously proposed method (Tome et al., 2015). We compare the performance of the Logistic Non-negative Matrix Factorization to Least Squares Non-negative Matrix Factorization and Kullback-Leibler (KL) Non-negative Matrix Factorization on sets of binary data: a synthetic dataset, a set of student comments on their professors collected in a binary term-document matrix and a sensory dataset. We find that choosing the number of components is an essential part in the modelling and interpretation, that is still unresolved.
机译:我们提出用于二进制数据分解的逻辑非负矩阵分解。二进制数据经常在例如文本分析,感官数据,市场数据等。分析非负数据的常用方法是非负矩阵分解,尽管从理论上讲它不适用于二进制数据,因此我们提出了一种新颖的非负矩阵分解基于逻辑链接功能。此外,我们概括了处理丢失数据的方法。将该方法的制定与先前提出的方法进行了比较(Tome等人,2015)。我们在二进制数据集上比较Logistic非负矩阵因式分解,最小二乘非负矩阵因式分解和Kullback-Leibler(KL)非负矩阵因式分解的性能:一个合成数据集,一组学生对他们教授的评论收集在二进制术语文档矩阵和感官数据集中。我们发现,选择组件数量是建模和解释中必不可少的部分,但仍未解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号