首页> 外文期刊>Multidimensional Systems and Signal Processing >A logistic non-negative matrix factorization approach to binary data sets
【24h】

A logistic non-negative matrix factorization approach to binary data sets

机译:对数数据集的逻辑非负矩阵分解方法

获取原文
获取原文并翻译 | 示例

摘要

An analysis of binary data sets employing Bernoulli statistics and a partially non-negative factorization of the related matrix of log-odds is presented. The model places several constraints onto the factorization process rendering the estimated basis system strictly non-negative or even binary. Thereby the proposed model places itself in between a logistic PCA and a binary NMF approach. We show with proper toy data sets that different variants of the proposed model yield reasonable results and indeed are able to estimate with good precision the underlying basis system which forms a new and often more compact representation of the observations. An application of the method to the USPS data set reveals the performance of the various variants of the model and shows good reconstruction quality even with a low rank binary basis set.
机译:提出了使用伯努利统计数据对二进制数据集进行分析以及对数相关矩阵进行部分非负因式分解的方法。该模型在分解过程中施加了一些约束,从而使估计的基础系统严格非负甚至是二元。因此,提出的模型将自己置于后勤PCA和二进制NMF方法之间。我们通过适当的玩具数据集显示,所提出模型的不同变体产生了合理的结果,并且确实能够以较高的精度估算基础基础系统,该基础系统形成了观测结果的新的且通常更为紧凑的表示形式。该方法在USPS数据集上的应用揭示了模型各种变体的性能,即使使用低秩的二进制基集也显示出良好的重建质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号