首页> 外文OA文献 >Kernel based orthogonalization for change detection in hyperspectral images
【2h】

Kernel based orthogonalization for change detection in hyperspectral images

机译:基于核的正交化方法用于高光谱图像中的变化检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kernel versions of principal component analysis (PCA) and minimum noise fraction (MNF) analysis are applied to change detection in hyperspectral image (HyMap) data. The kernel versions are based on so-called Q-mode analysis in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products are replaced by inner products between nonlinear mappings into higher dimensional feature space of the original data. Via kernel substitution also known as the kernel trick these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of this kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel PCA and MNF analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function and then performing a linear analysis in that space. An example shows the successful application of (kernel PCA and) kernel MNF analysis to change detection in HyMap data covering a small agricultural area near Lake Waging-Taching, Bavaria, in Southern Germany. In the change detection analysis all 126 spectral bands of the HyMap are included. Changes on the ground are most likely due to harvest having taken place between the two acquisitions and solar effects (both solar elevation and azimuth have changed). Both types of kernel analysis emphasize change and unlike kernel PCA, kernel MNF analysis seems to focus on the most conspicuous changes and also it gives a strong discrimination between change and no-change regions. Ordinary linear PCA or MNF analyses do not give this beautiful discrimination between change and no-change regions.
机译:主成分分析(PCA)和最小噪声分数(MNF)分析的内核版本适用于高光谱图像(HyMap)数据的变化检测。内核版本基于所谓的Q模式分析,其中数据仅通过Gram矩阵中的内部乘积进入分析。在内核版本中,内部乘积由非线性映射到原始数据的高维特征空间之间的内部乘积代替。通过内核替换(也称为内核技巧),映射之间的这些内部乘积又被内核函数替换,并且分析中所需的所有数量均以此内核函数表示。这意味着我们不必明确地了解非线性映射。内核PCA和MNF分析通过将数据通过内核函数隐式转换为高(甚至无限)维特征空间,然后在该空间中执行线性分析来处理非线性。一个示例显示了成功地应用(内核PCA和)内核MNF分析来更改HyMap数据中的变化检测,该数据覆盖了德国南部巴伐利亚州Waging-Taching湖附近的一个小农业区。在变化检测分析中,包括了HyMap的所有126个光谱带。地面变化很可能是由于两次采集之间发生了收割和太阳效应(太阳高度和方位都发生了变化)。两种类型的内核分析都强调变化,并且与内核PCA不同,内核MNF分析似乎专注于最明显的变化,并且它对变化区域和无变化区域之间也有很强的区分力。普通的线性PCA或MNF分析不能很好地区分变化区域和不变区域。

著录项

  • 作者

    Nielsen Allan Aasbjerg;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号