首页> 外文OA文献 >Dynamics in discrete two-dimensional nonlinear Schrödinger equations in the presence of point defects
【2h】

Dynamics in discrete two-dimensional nonlinear Schrödinger equations in the presence of point defects

机译:存在点缺陷时离散二维非线性schrödinger方程的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties of the stationary solutions are examined. The essential importance of the existence of stable immobile solitons in the two-dimensional dynamics of the traveling pulses is demonstrated. The typical scenario of the two-dimensional quasicollapse of a moving intense pulse represents the formation of standing trapped narrow spikes. The influence of the point impurities on this dynamics is also investigated.
机译:在广义二维离散非线性薛定inger方程的框架内研究了二维离散结构的动力学。考虑了Ablowitz-Ladik非线性和点杂质形式的非线性耦合。检查固定溶液的稳定性。证明了稳定的固定孤子在行进脉冲的二维动力学中的至关重要性。移动强脉冲的二维准塌陷的典型情况表示形成了固定的狭窄尖峰。还研究了点杂质对该动力学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号