首页> 外文OA文献 >Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods
【2h】

Correlating phospholipid fatty acids (PLFA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods

机译:通过多元统计方法将垃圾填埋场渗滤液污染含水层中的磷脂脂肪酸(pLFa)与生物地球化学因子联系起来

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Different multivariate statistical analyses were applied to phospholipid fatty acids representing the biomass composition and to different biogeochemical parameters measured in 37 samples from a landfill contaminated aquifer at Grindsted Landfill (Denmark). Principal component analysis and correspondence analysis were used to identify groups of samples showing similar patterns with respect to biogeochemical variables and phospholipid fatty acid composition. The principal component analysis revealed that for the biogeochemical parameters the first principal component was linked to the pollution effect and to redox processes and the second principal component described the geological and geochemical features of the samples. Dependent on the data transformation of the phospholipid fatty acid profiles in either absolute concentrations (logarithm transformed) or in mol% of total phospholipid fatty acids, different groups of samples and outliers were revealed by the principal component analysis. The principal component analysis on data in absolute concentrations revealed that many phospholipid fatty acids reflected the pollution effect on the biomass composition. In contrast, the phospholipid fatty acids in mol% divided the samples into one group of the more polluted samples and another with the nearly unpolluted samples. The important phospholipid fatty acids for this grouping were mainly a few of the normal saturated phospholipid fatty acids (10:0, 16:0 and 18:0). Discriminant analysis was used to allocate samples of phospholipid fatty acids into predefined classes. A large percentages of samples were classified correctly when discriminating samples into groups of dissolved organic carbon and specific conductivity, indicating that the biomass is highly influenced by the pollution. In contrast, the discriminant analysis revealed that on the basis of the profiles of phospholipid fatty acids no good discrimination between samples showing dominant sulfate reduction and dominant iron reduction could be made, nor between samples showing dominant nitrate reduction and aerobic respiration. Partial least square analysis related the phospholipid fatty acids data to the biogeochemical parameters assuming linear relationships. After selection of the optimal phospholipid fatty acid combination by genetic algorithms, good partial least squares models with low prediction errors were gained primarily between the biogeochemical parameters describing total contents of carbon, pH and chloride. The models predicting specific activity in terms of, e.g., sulfate reduction activity in a sample had relatively higher prediction errors and low correlation coefficients. This indicates that the phospholipid fatty acid profiles from complex habitats have limited value for identifying more specific microbial populations.
机译:对代表生物量组成的磷脂脂肪酸和在Grindsted垃圾场(丹麦)的一个垃圾场含水层中的37个样品中测量的不同生物地球化学参数进行了不同的多元统计分析。主成分分析和对应分析用于确定样品组,这些样品在生物地球化学变量和磷脂脂肪酸组成方面显示出相似的模式。主成分分析表明,对于生物地球化学参数,第一主成分与污染效应和氧化还原过程有关,第二主成分描述了样品的地质和地球化学特征。取决于以绝对浓度(对数转换)或以总磷脂脂肪酸的mol%计的磷脂脂肪酸谱的数据转换,通过主成分分析揭示了不同组的样品和异常值。对绝对浓度数据的主成分分析表明,许多磷脂脂肪酸反映了对生物质组成的污染影响。相反,以摩尔%计的磷脂脂肪酸将样品分成污染程度更高的样品的一组和另一种污染程度几乎没有的样品。该组中重要的磷脂脂肪酸主要是一些正常的饱和磷脂脂肪酸(10:0、16:0和18:0)。判别分析用于将磷脂脂肪酸样品分配到预定义的类别中。当将样品分为溶解的有机碳和比电导率的组时,正确分类的样品比例很大,这表明生物量受污染的影响很大。相反,判别分析表明,根据磷脂脂肪酸的谱图,不能很好地区分显示显着硫酸盐还原和显着铁还原的样品,也不能对显示显着硝酸盐还原和有氧呼吸的样品进行区分。假定线性关系,偏最小二乘分析将磷脂脂肪酸数据与生物地球化学参数相关。通过遗传算法选择最佳磷脂脂肪酸组合后,主要在描述碳,pH和氯化物总含量的生物地球化学参数之间获得了具有较低预测误差的良好的局部最小二乘模型。根据例如样品中硫酸盐还原活性来预测比活性的模型具有相对较高的预测误差和较低的相关系数。这表明来自复杂栖息地的磷脂脂肪酸谱对于鉴定更具体的微生物种群具有有限的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号