首页> 外文OA文献 >Computing Downward Closures for Stacked Counter Automata
【2h】

Computing Downward Closures for Stacked Counter Automata

机译:计算堆叠计数器自动机的向下闭包

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The downward closure of a language L of words is the set of all (not necessarily contiguous) subwords of members of L. It is well known that the downward closure of any language is regular. Although the downward closure seems to be a promising abstraction, there are only few language classes for which an automaton for the downward closure is known to be computable. It is shown here that for stacked counter automata, the downward closure is computable. Stacked counter automata are finite automata with a storage mechanism obtained by adding blind counters and building stacks. Hence, they generalize pushdown and blind counter automata. The class of languages accepted by these automata are precisely those in the hierarchy obtained from the context-free languages by alternating two closure operators: imposing semilinear constraints and taking the algebraic extension. The main tool for computing downward closures is the new concept of Parikh annotations. As a second application of Parikh annotations, it is shown that the hierarchy above is strict at every level.
机译:词的语言L的向下闭合是L成员的所有(不一定是连续的)子词的集合。众所周知,任何语言的向下闭合都是规则的。尽管向下闭合似乎是一种很有前途的抽象,但是只有很少的语言类可以计算出用于向下闭合的自动机。在此示出,对于堆叠的柜台自动机,向下的闭合是可计算的。堆叠式计数器自动机是有限自动机,具有通过添加盲计数器和构建堆栈而获得的存储机制。因此,它们概括了下推和盲计数器自动机。这些自动机接受的语言类别恰好是通过交替使用两个闭包运算符从无上下文语言中获得的层次结构中的那些语言:施加半线性约束并采用代数扩展。计算向下闭合的主要工具是Parikh注释的新概念。作为Parikh批注的第二个应用,表明上面的层次结构在每个级别都是严格的。

著录项

  • 作者

    Zetzsche Georg;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号