首页> 外文OA文献 >Reordering Buffer Management with a Logarithmic Guarantee in General Metric Spaces
【2h】

Reordering Buffer Management with a Logarithmic Guarantee in General Metric Spaces

机译:在一般度量空间中使用对数保证重新排序缓冲区管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the reordering buffer management problem a sequence of requests arrive online in a finite metric space, and have to be processed by a single server. This server is equipped with a request buffer of size k and can decide at each point in time, which request from its buffer to serve next. Servicing of a request is simply done by moving the server to the location of the request. The goal is to process all requests while minimizing the total distance that the server is traveling inside the metric space.In this paper we present a deterministic algorithm for the reordering buffer management problem that achieves a competitive ratio of O(log Delta + min {log n,log k}) in a finite metric space of n points and aspect ratio Delta. This is the first algorithm that works for general metric spaces and has just a logarithmic dependency on the relevant parameters. The guarantee is memory-robust, i.e., the competitive ratio decreases only slightly when the buffer-size of the optimum is increased to h=(1+epsilon)k. For memory robust guarantees our bounds are close to optimal.
机译:在重新排序缓冲区管理问题中,一系列请求在有限的度量空间中联机到达,并且必须由单个服务器处理。该服务器配备了大小为k的请求缓冲区,并且可以在每个时间点确定来自其缓冲区的下一个请求。通过将服务器移至请求的位置即可简单地完成请求的服务。目标是在最小化服务器在度量空间内移动的总距离的同时处理所有请求。在本文中,我们针对重排序缓冲区管理问题提出了一种确定性算法,该算法可实现O(log Delta + min {log n,log k})在n个点和纵横比Delta的有限度量空间中。这是第一种适用于一般度量空间的算法,并且仅对相关参数具有对数依赖性。保证具有鲁棒性,即当最优缓冲区的大小增加到h =(1 + epsk)k时,竞争比率只会稍微降低。对于内存健壮的保证,我们的界限接近最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号