首页> 外文OA文献 >The Complexity of Hex and the Jordan Curve Theorem
【2h】

The Complexity of Hex and the Jordan Curve Theorem

机译:十六进制的复杂性与Jordan曲线定理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Jordan curve theorem and Brouweru27s fixed-point theorem are fundamental problems in topology. We study their computational relationship, showing that a stylized computational version of Jordan’s theorem is PPAD-complete, and therefore in a sense computationally equivalent to Brouwer’s theorem. As a corollary, our computational result implies that these two theorems directly imply each other mathematically, complementing Maeharau27s proof that Brouwer implies Jordan [Maehara, 1984]. We then turn to the combinatorial game of Hex which is related to Jordanu27s theorem, and where the existence of a winner can be used to show Brouweru27s theorem [Gale,1979]. We establish that determining who won an (implicitly encoded) play of Hex is PSPACE-complete by adapting a reduction (due to Goldberg [Goldberg,2015]) from Quantified Boolean Formula (QBF). As this problem is analogous to evaluating the output of a canonical path-following algorithm for finding a Brouwer fixed point - and which is known to be PSPACE-complete [Goldberg/Papadimitriou/Savani, 2013] - we thereby establish a connection between Brouwer, Jordan and Hex higher in the complexity hierarchy.
机译:Jordan曲线定理和Brouwer的不动点定理是拓扑学中的基本问题。我们研究了它们的计算关系,发现约旦定理的程式化计算版本是PPAD完全的,因此在某种意义上在计算上等同于布劳威尔定理。作为推论,我们的计算结果暗示着这两个定理在数学上直接相互暗示,补充了Maehara的证明Brouwer隐含Jordan的证据[Maehara,1984]。然后,我们转到与约旦定理有关的十六进制组合博弈,其中获胜者的存在可以用来证明布劳威尔定理[Gale,1979]。我们通过调整量化布尔公式(QBF)的减少量(归因于Goldberg [Goldberg,2015]),确定谁赢得了(隐式编码的)Hex剧本是PSPACE-complete。由于此问题类似于评估用于查找Brouwer固定点的规范路径遵循算法的输出-已知该路径是PSPACE完整的[Goldberg / Papadimitriou / Savani,2013],因此我们建立了Brouwer之间的连接, Jordan和Hex在复杂性层次结构中较高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号