A one-dimensional cellular automaton is a discrete dynamical systemwhere a sequence of symbols evolves synchronously according to a local update rule. We discuss simple update rules that make the automaton perform multiplications of numbers by a constant. If the constant and the number base are selected suitably the automaton becomes a universal pattern generator: all finite strings over its state alphabet appear from a finite seed. In particular we considerthe automata that multiply by constants 3 and 3/2 in base 6. We discuss the connections of these automata to some difficult open questions in number theory, and we pose several further questions concerning pattern generation in cellular automata.
展开▼