首页> 外文OA文献 >Finer Separations Between Shallow Arithmetic Circuits
【2h】

Finer Separations Between Shallow Arithmetic Circuits

机译:浅算术电路之间的精细分离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we show that there is a family of polynomials P_n, where P_n is a polynomial in n variables of degree at most d = O(log^2(n)), such that* P_n can be computed by linear sized homogeneous depth-5 arithmetic circuits,* P_n can be computed by poly(n) sized non-homogeneous depth-3 arithmetic circuits.* Any homogeneous depth-4 arithmetic circuit computing P_n must have size at least n^{Omega(sqrt(d))}.This shows that the parameters for the depth reduction results of [Agrawal-Vinay 08, Koiran 12, Tavenas 13] are tight for extremely restricted classes of arithmetic circuits, for instance homogeneous depth-5 circuits and non-homogeneous depth-3 circuits, and over an appropriate range of parameters, qualitatively improve a result of [Kumar-Saraf 14], which showed that the parameters of depth reductions are optimal for algebraic branching programs.As an added advantage, our proofs are much shorter and simpler than the two known proofs of n^{Omega(sqrt(d))} lower bound for homogeneous depth-4 circuits [Kayal-Limaye-Saha-Srinivasan 14, Kumar-Saraf 14], albeit our proofs only work when d = O(log^2(n)).
机译:在本文中,我们证明存在一个多项式P_n,其中P_n是n个度数变量中的一个多项式,最大为d = O(log ^ 2(n)),因此* P_n可通过线性大小齐次来计算深度5的算术电路** P_n可以由大小为poly(n)的非均匀深度3的算术电路计算。*任何均质的深度4的算术电路计算P_n的大小必须至少为n ^ {Omega(sqrt(d) )}。这表明,[Agrawal-Vinay 08,Koiran 12,Tavenas 13]的深度减小结果的参数对于极有限的算术电路类别(例如,同构深度5电路和非同构深度3)是紧密的电路,并在适当的参数范围内,从质量上改善了[Kumar-Saraf 14]的结果,该结果表明深度减少的参数对于代数分支程序是最佳的。作为一个附加的优点,我们的证明比起简单得多的证明。同基因的n ^ {Omega(sqrt(d))}下界的两个已知证明尽管我们的证明仅在d = O(log ^ 2(n))时有效,但仍然有深度4回路[Kayal-Limaye-Saha-Srinivasan 14,Kumar-Saraf 14]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号