...
首页> 外文期刊>Electronic Colloquium on Computational Complexity >Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits
【24h】

Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits

机译:浅量子电路与无限扇入浅经典电路之间的指数分离

获取原文

摘要

Recently, Bravyi, Gosset, and K?nig (Science, 2018) exhibited a search problem called the 2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant-depth quantum circuit using bounded fan-in gates (or QNC^0 circuits), but cannot be solved by any constant-depth classical circuit using bounded fan-in AND, OR, and NOT gates (or NC^0 circuits). In other words, they exhibited a search problem in QNC^0 that is not in NC^0.We strengthen their result by proving that the 2D HLF problem is not contained in AC^0, the class of classical, polynomial-size, constant-depth circuits over the gate set of unbounded fan-in AND and OR gates, and NOT gates. We also supplement this worst-case lower bound with an average-case result: There exists a simple distribution under which any AC^0 circuit (even of nearly exponential size) has exponentially small correlation with the 2D HLF problem. Our results are shown by constructing a new problem in QNC^0, which we call the Relaxed Parity Halving Problem, which is easier to work with. We prove our AC^0 lower bounds for this problem, and then show that it reduces to the 2D HLF problem.As a step towards even stronger lower bounds, we present a search problem that we call the Parity Bending Problem, which is in QNC^0/qpoly (QNC^0 circuits that are allowed to start with a quantum state of their choice that is independent of the input), but is not even in AC^0[2] (the class AC^0 with unbounded fan-in XOR gates).All the quantum circuits in our paper are simple, and the main difficulty lies in proving the classical lower bounds. For this we employ a host of techniques, including a refinement of H{a}stad's switching lemmas for multi-output circuits that may be of independent interest, the Razborov-Smolensky AC^0[2] lower bound, Vazirani's XOR lemma, and lower bounds for non-local games.
机译:最近,Bravyi,Gosset和K?nig(Science,2018)展示了一个名为2D隐藏线性函数(2D HLF)的搜索问题,该问题可以通过使用有界扇入门的恒定深度量子电路来精确解决(或QNC ^ 0电路),但无法通过使用有限扇入AND,OR和NOT门(或NC ^ 0电路)的任何恒定深度的经典电路解决。换句话说,他们在QNC ^ 0中表现出一个搜索问题,而在NC ^ 0中则没有。我们通过证明AC ^ 0中不包含2D HLF问题,经典的,多项式大小,常数类别来增强他们的结果。无限扇入“与”或“或”门和“非”门的门组上的深度电路。我们还用平均情况结果补充了这种最坏情况下限:存在一个简单的分布,在该分布下,任何AC ^ 0电路(甚至接近指数大小)与2D HLF问题的指数相关性都很小。通过在QNC ^ 0中构造一个新问题来显示我们的结果,我们将其称为轻松奇偶平分问题,该问题更易于使用。我们证明了这个问题的AC ^ 0下界,然后证明它可以简化为2D HLF问题。作为朝着更强下界迈出的一步,我们提出了一个搜索问题,我们称之为奇偶弯曲问题,它在QNC中^ 0 / qpoly(允许以其选择的量子状态开始的QNC ^ 0电路,该量子状态独立于输入),但甚至不在AC ^ 0 [2]中(具有无限扇形的AC ^ 0类-本文中所有的量子电路都很简单,主要的困难在于证明经典的下界。为此,我们采用了多种技术,包括针对可能具有独立利益的多输出电路的H { aa} stad切换引理的改进,Razborov-Smolensky AC ^ 0 [2]下界,Vazirani的XOR引理,以及非本地游戏的下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号