首页> 外文OA文献 >Exploiting prior knowledge in Intelligent Assistants - Combining relational models with hierarchies
【2h】

Exploiting prior knowledge in Intelligent Assistants - Combining relational models with hierarchies

机译:利用智能助理的先验知识 - 将关系模型与层次结构相结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statitsical relational models have been successfully used to modelstatic probabilistic relationships between the entities of the domain.In this talk, we illustrate their use in a dynamic decison-theoreticsetting where the task is to assist a user by inferring his intentionalstructure and taking appropriate assistive actions. We show that thestatistical relational models can be used to succintly express thesystemu27s prior knowledge about the useru27s goal-subgoal structure andtune it with experience. As the system is better able to predict theuseru27s goals, it improves the effectiveness of its assistance. We showthrough experiments that both the hierarchical structure of the goals and the parameter sharing facilitated by relational models significantlyimprove the learning speed.
机译:统计关系模型已成功用于建模领域实体之间的静态概率关系。在本演讲中,我们说明了它们在动态决策理论设置中的用途,该任务旨在通过推断用户的有意结构并采取适当的辅助措施来帮助用户。我们证明了统计关系模型可用于简洁地表达系统关于用户目标-子目标结构的先验知识,并根据经验对其进行调整。由于该系统能够更好地预测用户的目标,因此提高了其协助的有效性。我们通过实验表明,目标的层次结构和关系模型所促进的参数共享都大大提高了学习速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号