首页> 外文OA文献 >Evolution of robotic controllers using genetic algorithms
【2h】

Evolution of robotic controllers using genetic algorithms

机译:使用遗传算法的机器人控制器的演变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research investigates evolutionary robotics which uses evolutionary computation to generate robotic controllers. The majority of research in this field has been primarily focused on the use of software genetic algorithms to evolve robotic controllers based on artificial neural networks and fuzzy logic. Investigation into other forms of evolvable robotic controllers however is less studied, thus the focus of this research was to investigate and develop new methods of evolving controllers for evolutionary robotics. This led to the creation of three novel concepts within this field including the evolution of lookup tables for robotic control, the implementation of the robotic simulation in hardware for fitness evaluation of individuals, and advances in virtual Field Programmable Gate Arrays (FPGAs) for robotic control.The innovative utilization of a lookup table for a robotic controller used multi-dimensional lookup tables that linked the state of the robot obtained from input sensors to the required output for the robots actuators in order for the robot to function correctly. A population of these tables (chromosomes) were evolved using genetic algorithms. Two multi-dimensional lookup table robotic controllers were successfully evolved using standard genetic algorithms.The novel approach of implementing the robotic simulation in hardware rather than software was performed. The time required for a genetic algorithm to evolve a successful robotic controller is largely dependent on the fitness evaluation of an individual. If the robotic simulation could be performed in hardware then there will be a significant increase in performance. It was shown that hardware robotic simulations could be constructed with an improvement in evolution completion time of over two orders of magnitude greater than that of a software simulation. The use of robotic controllers in the form of two virtual FPGAs were evaluated using two Cartesian based architectures, a fixed layer and a reducing layer virtual FPGA. The configuration bit stream which describes the circuits within the virtual FPGA was evolved by a genetic algorithm implemented in hardware. The input sensors of the robot, indicating its current state were connected to the inputs of the virtual FPGA, while the output was connected to the robot actuators. It was found that both architectures could be evolved to produce robotic controllers.
机译:这项研究调查了进化机器人技术,它使用进化计算来生成机器人控制器。该领域的大部分研究主要集中在使用软件遗传算法来发展基于人工神经网络和模糊逻辑的机器人控制器。然而,对其他形式的可进化机器人控制器的研究较少,因此,本研究的重点是研究和开发用于进化机器人的进化控制器的新方法。这导致在该领域内创建了三个新颖的概念,包括用于机器人控制的查找表的演变,在硬件中实现机器人仿真以进行个人适应性评估以及在用于机器人控制的虚拟现场可编程门阵列(FPGA)中的进步用于机器人控制器的查找表的创新用途是使用多维查找表,该多维查找表将从输入传感器获得的机器人状态与机器人执行器的所需输出链接在一起,以使机器人正常运行。这些表(染色体)的群体是使用遗传算法进化得到的。使用标准遗传算法成功地开发了两个多维查找表机器人控制器。执行了一种在硬件而非软件中实现机器人仿真的新颖方法。遗传算法发展成功的机器人控制器所需的时间很大程度上取决于个人的适应性评估。如果可以在硬件中执行机器人仿真,那么性能将会大大提高。结果表明,可以构建硬件机器人仿真,并且将其完成完成时间的改进比软件仿真的改进多两个数量级。使用两种基于笛卡尔的架构,固定层和还原层虚拟FPGA,评估了以两个虚拟FPGA形式使用机器人控制器的情况。描述虚拟FPGA内电路的配置位流是通过在硬件中实现的遗传算法发展而来的。指示其当前状态的机器人输入传感器连接到虚拟FPGA的输入,而输出则连接到机器人执行器。发现可以将两种体系结构发展为生产机器人控制器。

著录项

  • 作者

    Beckerleg Mark;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号