首页> 外文OA文献 >Speech Dereverberation Based on Integrated Deep and Ensemble Learning
【2h】

Speech Dereverberation Based on Integrated Deep and Ensemble Learning

机译:基于集成深度和集成学习的语音去混响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reverberation, which is generally caused by sound reflections from walls,ceilings, and floors, can result in severe performance degradations of acousticapplications. Due to a complicated combination of attenuation and time-delayeffects, the reverberation property is difficult to characterize, and itremains a challenging task to effectively retrieve the anechoic speech signalsfrom reverberation ones. In the present study, we proposed a novel integrateddeep and ensemble learning (IDEL) algorithm for speech dereverberation. TheIDEL algorithm consists of offline and online phases. In the offline phase, wetrain multiple dereverberation models, each aiming to precisely dereverb speechsignals in a particular acoustic environment; then a unified fusion function isestimated that aims to integrate the information of multiple dereverberationmodels. In the online phase, an input utterance is first processed by each ofthe dereverberation models. The outputs of all models are integratedaccordingly to generate the final anechoic signal. We evaluated IDEL ondesigned acoustic environments, including both matched and mismatchedconditions of the training and testing data. Experimental results confirm thatthe proposed IDEL algorithm outperforms single deep-neural-network-baseddereverberation model with the same model architecture and training data.
机译:通常由墙壁,天花板和地板的声音反射引起的混响会导致声学应用的严重性能下降。由于衰减和时间延迟效应的复杂组合,混响特性难以表征,有效地从混响信号中获取回声语音信号仍然是一项艰巨的任务。在本研究中,我们提出了一种用于语音去混响的新型深度学习和集成学习(IDEL)算法。 IDEL算法由离线阶段和在线阶段组成。在离线阶段,我们训练多个去混响模型,每个模型都旨在在特定的声学环境中精确地去混响语音信号。然后估计一个统一的融合功能,旨在整合多个去混响模型的信息。在在线阶段,每个混响模型首先处理输入语音。所有模型的输出都根据积分进行集成,以生成最终的回声信号。我们评估了IDEL设计的声学环境,包括训练和测试数据的匹配条件和不匹配条件。实验结果证实,在相同的模型架构和训练数据的基础上,所提出的IDEL算法优于基于单个深层神经网络的去神经模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号