首页> 中文期刊> 《计算机技术与发展》 >基于集成学习的语音情感识别算法研究

基于集成学习的语音情感识别算法研究

     

摘要

语音情感识别是语音识别的热门方向,心理学将情感识别分为离散型和连续型,离散型情感识别常用的声学特征为韵律学特征、基于谱的相关特征、音质特征,识别方法通常有KNN、SVM、HMM等。提出一种基于距离加权的改进KNN算法,引入类平均距离作为加权依据,并设计一种基于集成学习的加权投票算法,将改进KNN、SVM、BPNN分类方法进行集成,提高语音情感识别率。实验表明,改进后的KNN算法相比传统KNN,识别率在不同语种的语料库上均有提升,最大提升为9.6%,且表现结果稳定,准确率与SVM、BPNN大致相当,可用于集成学习;对比单一识别算法,所设计的集成学习算法具有较高可靠性,在生气、高兴、悲伤、惊慌及中性情感上均达到较好的识别效果,实现了离散型语音情感的识别。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号