首页> 外文期刊>Neurocomputing >Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface
【24h】

Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface

机译:基于协变量偏移估计的自适应集成学习用于处理与运动图像相关的基于脑电图的脑机接口中的非平稳性

获取原文
获取原文并翻译 | 示例

摘要

The non-stationary nature of electroencephalography (EEG) signals makes an EEG-based brain-computer interface (BCI) a dynamic system, thus improving its performance is a challenging task. In addition, it is well-known that due to non-stationarity based covariate shifts, the input data distributions of EEG-based BCI systems change during inter- and intra-session transitions, which poses great difficulty for developments of online adaptive data-driven systems. Ensemble learning approaches have been used previously to tackle this challenge. However, passive scheme based implementation leads to poor efficiency while increasing high computational cost. This paper presents a novel integration of covariate shift estimation and unsupervised adaptive ensemble learning (CSE-UAEL) to tackle non-stationarity in motor-imagery (MI) related EEG classification. The proposed method first employs an exponentially weighted moving average model to detect the covariate shifts in the common spatial pattern features extracted from MI related brain responses. Then, a classifier ensemble was created and updated over time to account for changes in streaming input data distribution wherein new classifiers are added to the ensemble in accordance with estimated shifts. Furthermore, using two publicly available BCI-related EEG datasets, the proposed method was extensively compared with the state-of-the-art single-classifier based passive scheme, single classifier based active scheme and ensemble based passive schemes. The experimental results show that the proposed active scheme based ensemble learning algorithm significantly enhances the BCI performance in MI classifications. (C) 2019 The Authors. Published by Elsevier B.V.
机译:脑电图(EEG)信号的非平稳特性使基于EEG的脑机接口(BCI)成为动态系统,因此提高其性能是一项艰巨的任务。另外,众所周知,由于基于非平稳性的协变量移位,基于EEG的BCI系统的输入数据分布在会话间和会话间过渡期间发生了变化,这为在线自适应数据驱动的开发带来了很大的困难。系统。集成学习方法以前曾用于解决这一挑战。但是,基于被动方案的实现方式导致效率低下,同时增加了高计算成本。本文提出了一种新的协变量偏移估计和无监督自适应集成学习(CSE-UAEL)集成,以解决运动图像(MI)相关的脑电分类中的非平稳性。所提出的方法首先采用指数加权移动平均模型来检测从MI相关的大脑反应中提取的常见空间模式特征中的协变量偏移。然后,创建分类器集合并随时间更新,以解决流输入数据分布中的变化,其中根据估计的偏移将新的分类器添加到集合中。此外,使用两个公开可用的BCI相关的EEG数据集,将该方法与最新的基于单分类器的被动方案,基于单分类器的主动方案和基于集成的被动方案进行了广泛比较。实验结果表明,提出的基于主动方案的集成学习算法显着提高了MI分类中的BCI性能。 (C)2019作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号