首页> 外文期刊>Neurocomputing >Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface
【24h】

Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface

机译:基于协变速估计的自适应集合学习,用于处理电动机图像相关EEG基础脑电电脑界面的非实用性

获取原文
获取原文并翻译 | 示例

摘要

The non-stationary nature of electroencephalography (EEG) signals makes an EEG-based brain-computer interface (BCI) a dynamic system, thus improving its performance is a challenging task. In addition, it is well-known that due to non-stationarity based covariate shifts, the input data distributions of EEG-based BCI systems change during inter- and intra-session transitions, which poses great difficulty for developments of online adaptive data-driven systems. Ensemble learning approaches have been used previously to tackle this challenge. However, passive scheme based implementation leads to poor efficiency while increasing high computational cost. This paper presents a novel integration of covariate shift estimation and unsupervised adaptive ensemble learning (CSE-UAEL) to tackle non-stationarity in motor-imagery (MI) related EEG classification. The proposed method first employs an exponentially weighted moving average model to detect the covariate shifts in the common spatial pattern features extracted from MI related brain responses. Then, a classifier ensemble was created and updated over time to account for changes in streaming input data distribution wherein new classifiers are added to the ensemble in accordance with estimated shifts. Furthermore, using two publicly available BCI-related EEG datasets, the proposed method was extensively compared with the state-of-the-art single-classifier based passive scheme, single classifier based active scheme and ensemble based passive schemes. The experimental results show that the proposed active scheme based ensemble learning algorithm significantly enhances the BCI performance in MI classifications. (C) 2019 The Authors. Published by Elsevier B.V.
机译:脑电图(EEG)信号的非静止性质使得基于EEG的脑电电脑接口(BCI)动态系统,从而提高其性能是一个具有挑战性的任务。此外,众所周知,由于非实用性基于的协变量移位,基于EEG的BCI系统的输入数据分布在间歇和内部转换期间改变,这对在线自适应数据驱动的开发产生了很大的困难系统。以前使用的集合学习方法以解决这一挑战。然而,基于被动方案的实现导致效率差,同时提高了高计算成本。本文介绍了协变速估计和无监督自适应集合学习(CSE-UAEL)的新颖集成,以解决运动图像(MI)相关的EEG分类中的非公平性。所提出的方法首先采用指数加权的移动平均模型,以检测从MI相关脑响应中提取的共同空间模式特征中的协变量变化。然后,随着时间的推移创建和更新分类器集合,以便根据估计的偏移将新分类器添加到集合中的流媒体输入数据分发的变化。此外,使用两个可公开的BCI相关的EEG数据集,与基于最先进的单分类器的无源方案,单分类器基于主动方案和基于集合的无源方案进行了广泛的方法。实验结果表明,所提出的基于主动方案的集合学习算法显着提高了MI分类中的BCI性能。 (c)2019年作者。由elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号