首页> 外文OA文献 >Deep Network for Simultaneous Decomposition and Classification in UWB-SAR Imagery
【2h】

Deep Network for Simultaneous Decomposition and Classification in UWB-SAR Imagery

机译:用于同时分解和分类的深度网络   UWB-saR图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classifying buried and obscured targets of interest from other natural andmanmade clutter objects in the scene is an important problem for the U.S. Army.Targets of interest are often represented by signals captured usinglow-frequency (UHF to L-band) ultra-wideband (UWB) synthetic aperture radar(SAR) technology. This technology has been used in various applications,including ground penetration and sensing-through-the-wall. However, thetechnology still faces a significant issues regarding low-resolution SARimagery in this particular frequency band, low radar cross sections (RCS),small objects compared to radar signal wavelengths, and heavy interference. Theclassification problem has been firstly, and partially, addressed by sparserepresentation-based classification (SRC) method which can extract noise fromsignals and exploit the cross-channel information. Despite providing potentialresults, SRC-related methods have drawbacks in representing nonlinear relationsand dealing with larger training sets. In this paper, we propose a SimultaneousDecomposition and Classification Network (SDCN) to alleviate noise inferencesand enhance classification accuracy. The network contains two jointly trainedsub-networks: the decomposition sub-network handles denoising, while theclassification sub-network discriminates targets from confusers. Experimentalresults show significant improvements over a network without decomposition andSRC-related methods.
机译:对场景中的其他自然和人造杂物进行掩埋和遮挡的感兴趣目标的分类对于美国陆军来说是一个重要问题。感兴趣的目标通常由使用低频(UHF至L波段)超宽带(UWB)捕获的信号表示合成孔径雷达(SAR)技术。这项技术已用于各种应用中,包括地面穿透和墙壁感应。但是,该技术在该特定频段上的低分辨率SAR图像,低雷达截面(RCS),与雷达信号波长相比较小的物体以及严重干扰等方面仍然面临着重大问题。首先,通过基于稀疏表示的分类(SRC)方法解决了分类问题,该方法可以从信号中提取噪声并利用跨通道信息。尽管提供了潜在的结果,但与SRC相关的方法在表示非线性关系和处理较大的训练集方面存在缺陷。在本文中,我们提出了一种同时分解和分类网络(SDCN),以减轻噪声干扰并提高分类准确性。该网络包含两个共同训练的子网络:分解子网络处理降噪,而分类子网络则将目标与混淆者区分开。实验结果表明,在没有分解和与SRC相关的方法的情况下,网络上的重大改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号