We prove a tight lower bound on the asymptotic performance ratio $\rho$ ofthe bounded space online $d$-hypercube bin packing problem, solving an openquestion raised in 2005. In the classic $d$-hypercube bin packing problem, weare given a sequence of $d$-dimensional hypercubes and we have an unlimitednumber of bins, each of which is a $d$-dimensional unit hypercube. The goal isto pack (orthogonally) the given hypercubes into the minimum possible number ofbins, in such a way that no two hypercubes in the same bin overlap. The boundedspace online $d$-hypercube bin packing problem is a variant of the$d$-hypercube bin packing problem, in which the hypercubes arrive online andeach one must be packed in an open bin without the knowledge of the nexthypercubes. Moreover, at each moment, only a constant number of open bins areallowed (whenever a new bin is used, it is considered open, and it remains sountil it is considered closed, in which case, it is not allowed to accept newhypercubes). Epstein and van Stee [SIAM J. Comput. 35 (2005), no. 2, 431-448]showed that $\rho$ is $\Omega(\log d)$ and $O(d/\log d)$, and conjectured thatit is $\Theta(\log d)$. We show that $\rho$ is in fact $\Theta(d/\log d)$. Toobtain this result, we elaborate on some ideas presented by those authors, andgo one step further showing how to obtain better (offline) packings of certainspecial instances for which one knows how many bins any bounded space algorithmhas to use. Our main contribution establishes the existence of such packings,for large enough $d$, using probabilistic arguments. Such packings also lead tolower bounds for the prices of anarchy of the selfish $d$-hypercube bin packinggame. We present a lower bound of $\Omega(d/\log d)$ for the pure price ofanarchy of this game, and we also give a lower bound of $\Omega(\log d)$ forits strong price of anarchy.
展开▼
机译:我们证明了有界空间在线$ d $-超立方体箱包装问题的渐近性能比$ \ rho的紧下界,解决了2005年提出的一个开放式问题。在经典的$ d $-超立方体箱包装问题中,给定了$ d $维超立方体的序列,我们有无限数量的箱,每个箱都是$ d $维单位超立方体。目标是将给定的超立方体包装(正交)到尽可能少的箱中,以使同一箱中没有两个超立方体重叠。有界空间在线$ d $-超立方体垃圾箱打包问题是$ d $ -hypercube垃圾箱打包问题的一种变体,其中超多维数据集在线到达,每个超多维数据集都必须装在一个开放的垃圾箱中,而无需了解下一个超级立方体。而且,在每个时刻,仅允许恒定数量的打开箱柜(无论何时使用新的箱柜,它都被认为是打开的,并且一直保持到被认为封闭柜子为止,在这种情况下,不允许接受新的超立方体)。 Epstein和van Stee [SIAM J. Comput。 35(2005),no。 [2,431-448]显示$ \ rho $是$ \ Omega(\ log d)$和$ O(d / \ log d)$,并推测它是$ \ Theta(\ log d)$。我们证明$ \ rho $实际上是$ \ Theta(d / \ log d)$。为了获得此结果,我们详细阐述了这些作者提出的一些想法,并且进一步说明了如何获得某些特殊实例的更好(离线)包装,对于这些特殊实例,人们知道任何有界空间算法都需要使用多少个容器。我们的主要贡献是使用概率论证建立了此类填充的存在,对于足够大的$ d $。这种包装还导致自私的$ d $-超立方体垃圾箱包装游戏的无政府状态价格降低。对于此游戏的纯无政府状态,我们给出$ \ Omega(d / \ log d)$的下限,并且为无政府状态的强价格也给出$ \ Omega(\ log d)$的下限。
展开▼