首页> 外文OA文献 >Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging
【2h】

Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging

机译:高阶低秩自适应稀疏信号(LassI)模型   加速动态成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sparsity-based approaches have been popular in many applications in imageprocessing and imaging. Compressed sensing exploits the sparsity of images in atransform domain or dictionary to improve image recovery from undersampledmeasurements. In the context of inverse problems in dynamic imaging, recentresearch has demonstrated the promise of sparsity and low-rank techniques. Forexample, the patches of the underlying data are modeled as sparse in anadaptive dictionary domain, and the resulting image and dictionary estimationfrom undersampled measurements is called dictionary-blind compressed sensing,or the dynamic image sequence is modeled as a sum of low-rank and sparse (insome transform domain) components (L+S model) that are estimated from limitedmeasurements. In this work, we investigate a data-adaptive extension of the L+Smodel, dubbed LASSI, where the temporal image sequence is decomposed into alow-rank component and a component whose spatiotemporal (3D) patches are sparsein some adaptive dictionary domain. We investigate various formulations andefficient methods for jointly estimating the underlying dynamic signalcomponents and the spatiotemporal dictionary from limited measurements. We alsoobtain efficient sparsity penalized dictionary-blind compressed sensing methodsas special cases of our LASSI approaches. Our numerical experiments demonstratethe promising performance of LASSI schemes for dynamic magnetic resonance imagereconstruction from limited k-t space data compared to recent methods such ask-t SLR and L+S, and compared to the proposed dictionary-blind compressedsensing method.
机译:基于稀疏性的方法已在图像处理和成像的许多应用中流行。压缩感知利用变换域或字典中图像的稀疏性,以提高欠采样测量的图像恢复率。在动态成像的逆问题中,最近的研究表明了稀疏性和低等级技术的前景。例如,在自适应字典域中,基础数据的补丁被建模为稀疏模型,而欠采样测量结果得到的图像和字典估计被称为字典盲压缩感知,或者动态图像序列被建模为低秩和稀疏之和(在某些转换域中)根据有限度量估算的分量(L + S模型)。在这项工作中,我们调查了称为LASSI的L + S模型的数据自适应扩展,其中时间图像序列被分解为低秩分量和其时空(3D)补丁在某些自适应词典域中稀疏的分量。我们研究了各种公式和有效的方法,用于从有限的测量结果中共同估算潜在的动态信号分量和时空字典。作为LASSI方法的特例,我们还获得了有效的稀疏性惩罚性字典盲压缩感知方法。我们的数值实验表明,与最近的ask-t SLR和L + S等方法相比,与拟议的字典盲压缩传感方法相比,LASSI方案在有限的k-t空间数据上进行动态磁共振图像重建的性能令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号