首页> 外文OA文献 >Unsupervised Feature Learning for Writer Identification and Writer Retrieval
【2h】

Unsupervised Feature Learning for Writer Identification and Writer Retrieval

机译:作者识别与作者的无监督特征学习   恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep Convolutional Neural Networks (CNN) have shown great success insupervised classification tasks such as character classification or dating.Deep learning methods typically need a lot of annotated training data, which isnot available in many scenarios. In these cases, traditional methods are oftenbetter than or equivalent to deep learning methods. In this paper, we propose asimple, yet effective, way to learn CNN activation features in an unsupervisedmanner. Therefore, we train a deep residual network using surrogate classes.The surrogate classes are created by clustering the training dataset, whereeach cluster index represents one surrogate class. The activations from thepenultimate CNN layer serve as features for subsequent classification tasks. Weevaluate the feature representations on two publicly available datasets. Thefocus lies on the ICDAR17 competition dataset on historical document writeridentification (Historical-WI). We show that the activation features trainedwithout supervision are superior to descriptors of state-of-the-art writeridentification methods. Additionally, we achieve comparable results in the caseof handwriting classification using the ICFHR16 competition dataset onhistorical Latin script types (CLaMM16).
机译:深度卷积神经网络(CNN)在有监督的分类任务(例如字符分类或约会)中显示出了巨大的成功。深度学习方法通​​常需要大量带注释的训练数据,在许多情况下并不可用。在这些情况下,传统方法通常比深度学习方法更好或更等效。在本文中,我们提出了一种简单而有效的方法,以无监督的方式学习CNN激活功能。因此,我们使用代理类来训练一个深度残差网络。代理类是通过对训练数据集进行聚类来创建的,其中每个聚类索引代表一个代理类。来自倒数第二个CNN层的激活充当后续分类任务的功能。我们在两个公开可用的数据集上评估要素表示。重点在于历史文档作者识别(Historical-WI)上的ICDAR17竞赛数据集。我们显示,在没有监督的情况下训练的激活功能要优于最新的作者识别方法的描述符。此外,在使用历史拉丁文字类型(CLaMM16)的ICFHR16竞争数据集进行笔迹分类的情况下,我们获得了可比的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号