首页> 外文期刊>Expert Systems with Application >Multiple writer retrieval systems based on language independent dissimilarity learning
【24h】

Multiple writer retrieval systems based on language independent dissimilarity learning

机译:基于语言独立差异学习的多作者检索系统

获取原文
获取原文并翻译 | 示例

摘要

Retrieval based on query images supports interesting applications in handwritten document analysis, such as checking manuscripts originality, and authorship. In this respect, writer retrieval systems aim to automatically find all manuscripts belonging to the same author. Presently, we propose a new combination scheme for multiple writer retrieval systems that employ different features and dissimilarities. The proposed combination is founded on writer-independent, SVM dissimilarity learning. For experimental evaluation, three individual systems are proposed each of which, has its specific features. To develop the first system, we propose the Multiscale Histogram Of Templates (M-HOT). For the second system, we introduce the so-called Multi-Gradient Elongated Quinary Pattern (MG-EQP) as new descriptor for handwriting characterization. The third system uses the well-known Run Length Features. Retrieval tests are performed on CVL, ICDAR-2011, ICDAR-2013 and ICDAR-2017 datasets. Furthermore, to highlight the language-independence aspect, experiments are performed on KHATT dataset that contains Arabic handwritten documents. Results obtained evince the effectiveness of the proposed features as well as the combination scheme, which outperforms both individual systems and the state of the art. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于查询图像的检索支持手写文档分析中有趣的应用程序,例如检查手稿的原始性和作者身份。在这方面,作者检索系统旨在自动找到属于同一作者的所有手稿。目前,我们为采用不同特征和不同点的多作者检索系统提出了一种新的组合方案。提议的组合基于独立于作者的SVM差异学习。为了进行实验评估,提出了三个独立的系统,每个系统都有其特定的功能。为了开发第一个系统,我们提出了模板的多尺度直方图(M-HOT)。对于第二个系统,我们引入了所谓的多梯度细长五进制图案(MG-EQP)作为手写特征的新描述符。第三个系统使用众所周知的行程长度功能。对CVL,ICDAR-2011,ICDAR-2013和ICDAR-2017数据集进行了检索测试。此外,为了强调语言独立性,对包含阿拉伯手写文档的KHATT数据集进行了实验。获得的结果证明了所提出的功能以及组合方案的有效性,其优于单个系统和现有技术。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号