首页> 外文OA文献 >An effective algorithm for hyperparameter optimization of neural networks
【2h】

An effective algorithm for hyperparameter optimization of neural networks

机译:一种有效的神经网络参数优化算法   网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major challenge in designing neural network (NN) systems is to determinethe best structure and parameters for the network given the data for themachine learning problem at hand. Examples of parameters are the number oflayers and nodes, the learning rates, and the dropout rates. Typically, theseparameters are chosen based on heuristic rules and manually fine-tuned, whichmay be very time-consuming, because evaluating the performance of a singleparametrization of the NN may require several hours. This paper addresses theproblem of choosing appropriate parameters for the NN by formulating it as abox-constrained mathematical optimization problem, and applying aderivative-free optimization tool that automatically and effectively searchesthe parameter space. The optimization tool employs a radial basis functionmodel of the objective function (the prediction accuracy of the NN) toaccelerate the discovery of configurations yielding high accuracy. Candidateconfigurations explored by the algorithm are trained to a small number ofepochs, and only the most promising candidates receive full training. Theperformance of the proposed methodology is assessed on benchmark sets and inthe context of predicting drug-drug interactions, showing promising results.The optimization tool used in this paper is open-source.
机译:设计神经网络(NN)系统的主要挑战是,根据手边机器学习问题的数据,确定网络的最佳结构和参数。参数的示例是层和节点的数量,学习率和辍学率。通常,这些参数是根据启发式规则选择的,并进行手动微调,这可能非常耗时,因为评估NN的单个参数化性能可能需要几个小时。本文解决了为神经网络选择合适参数的问题,方法是将其公式化为约束约束的数学优化问题,并应用可自动有效搜索参数空间的无导数优化工具。优化工具采用目标函数的径向基函数模型(NN的预测精度)来加快发现具有高精度的配置的速度。该算法探索的候选配置只训练了少数几个时期,只有最有前途的候选者才接受了完整的训练。在基准集和预测药物相互作用的背景下,对所提出方法的性能进行了评估,结果显示出令人鼓舞的结果。本文使用的优化工具是开源的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号