首页> 外文OA文献 >A Least Squares Radial Basis Function Partition of Unity Method for Solving PDEs
【2h】

A Least Squares Radial Basis Function Partition of Unity Method for Solving PDEs

机译:统一方法的最小二乘径向基函数划分   解决偏微分方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, collocation based radial basis function (RBF) partition of unitymethods (PUM) for solving partial differential equations have been formulatedand investigated numerically and theoretically. When combined with stableevaluation methods such as the RBF-QR method, high order convergence rates canbe achieved and sustained under refinement. However, some numerical issuesremain. The method is sensitive to the node layout, and condition numbersincrease with the refinement level. Here, we propose a modified formulationbased on least squares approximation. We show that the sensitivity to nodelayout is removed and that conditioning can be controlled through oversampling.We derive theoretical error estimates both for the collocation and leastsquares RBF-PUM. Numerical experiments are performed for the Poisson equationin two and three space dimensions for regular and irregular geometries. Theconvergence experiments confirm the theoretical estimates, and the leastsquares formulation is shown to be 5-10 times faster than the collocationformulation for the same accuracy.
机译:近来,已经提出了用于解偏微分方程的基于搭配的一元法(PUM)的径向基函数(RBF)分区,并进行了数值和理论研究。当与诸如RBF-QR方法之类的稳定评估方法结合使用时,可以实现高阶收敛速度,并且可以在精细化条件下保持这种收敛速度。但是,仍然存在一些数字问题。该方法对节点布局很敏感,并且条件数随着改进级别的增加而增加。在这里,我们提出了一种基于最小二乘近似的改进公式。我们证明了对节点布局的敏感性已经消除,并且可以通过过采样来控制条件。我们得出了搭配和最小二乘RBF-PUM的理论误差估计。在规则和不规则几何的两个和三个空间维中对泊松方程进行了数值实验。收敛性实验证实了理论估计,并且在相同精度下,最小二乘公式显示出比并置公式快5-10倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号