首页> 外文OA文献 >Shape-aware Surface Reconstruction from Sparse 3D Point-Clouds
【2h】

Shape-aware Surface Reconstruction from Sparse 3D Point-Clouds

机译:稀疏三维点云的形状感知曲面重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The reconstruction of an object's shape or surface from a set of 3D pointsplays an important role in medical image analysis, e.g. in anatomyreconstruction from tomographic measurements or in the process of aligningintra-operative navigation and preoperative planning data. In such scenarios,one usually has to deal with sparse data, which significantly aggravates theproblem of reconstruction. However, medical applications often providecontextual information about the 3D point data that allow to incorporate priorknowledge about the shape that is to be reconstructed. To this end, we proposethe use of a statistical shape model (SSM) as a prior for surfacereconstruction. The SSM is represented by a point distribution model (PDM),which is associated with a surface mesh. Using the shape distribution that ismodelled by the PDM, we formulate the problem of surface reconstruction from aprobabilistic perspective based on a Gaussian Mixture Model (GMM). In order todo so, the given points are interpreted as samples of the GMM. By using mixturecomponents with anisotropic covariances that are "oriented" according to thesurface normals at the PDM points, a surface-based fitting is accomplished.Estimating the parameters of the GMM in a maximum a posteriori manner yieldsthe reconstruction of the surface from the given data points. We compare ourmethod to the extensively used Iterative Closest Points method on severaldifferent anatomical datasets/SSMs (brain, femur, tibia, hip, liver) anddemonstrate superior accuracy and robustness on sparse data.
机译:从一组3D点重建对象的形状或表面在医学图像分析中起着重要的作用,例如从断层扫描测量中进行解剖重建,或在调整术中导航和术前计划数据的过程中。在这种情况下,通常必须处理稀疏数据,这极大地加剧了重建问题。但是,医疗应用程序通常会提供有关3D点数据的上下文信息,从而可以结合有关要重建形状的先验知识。为此,我们建议使用统计形状模型(SSM)作为表面重建的先验。 SSM由与表面网格关联的点分布模型(PDM)表示。使用由PDM建模的形状分布,我们基于高斯混合模型(GMM)从概率角度提出了表面重构问题。为此,将给定的点解释为GMM的样本。通过使用各向异性协方差根据PDM点处的表面法线“定向”的混合成分,可以完成基于表面的拟合。以最大后验方式估计GMM的参数,可以从给定的数据点重建表面。我们在几种不同的解剖数据集/ SSM(大脑,股骨,胫骨,髋部,肝脏)上将我们的方法与广泛使用的迭代最近点方法进行了比较,并在稀疏数据上展现了卓越的准确性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号