首页> 外文OA文献 >Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights
【2h】

Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights

机译:具有负边的鲁棒半监督图分类器学习   权重

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a semi-supervised learning scenario, (possibly noisy) partially observedlabels are used as input to train a classifier, in order to assign labels tounclassified samples. In this paper, we study this classifier learning problemfrom a graph signal processing (GSP) perspective. Specifically, by viewing abinary classifier as a piecewise constant graph-signal in a high-dimensionalfeature space, we cast classifier learning as a signal restoration problem viaa classical maximum a posteriori (MAP) formulation. Unlike previousgraph-signal restoration works, we consider in addition edges with negativeweights that signify anti-correlation between samples. One unfortunateconsequence is that the graph Laplacian matrix $\mathbf{L}$ can be indefinite,and previously proposed graph-signal smoothness prior $\mathbf{x}^T \mathbf{L}\mathbf{x}$ for candidate signal $\mathbf{x}$ can lead to pathologicalsolutions. In response, we derive an optimal perturbation matrix$\boldsymbol{\Delta}$ - based on a fast lower-bound computation of the minimumeigenvalue of $\mathbf{L}$ via a novel application of the Haynsworth inertiaadditivity formula---so that $\mathbf{L} + \boldsymbol{\Delta}$ is positivesemi-definite, resulting in a stable signal prior. Further, instead of forcinga hard binary decision for each sample, we define the notion of generalizedsmoothness on graph that promotes ambiguity in the classifier signal. Finally,we propose an algorithm based on iterative reweighted least squares (IRLS) thatsolves the posed MAP problem efficiently. Extensive simulation results showthat our proposed algorithm outperforms both SVM variants and graph-basedclassifiers using positive-edge graphs noticeably.
机译:在半监督学习场景中,(可能是嘈杂的)部分观察到的标签被用作训练分类器的输入,以便为未分类的样本分配标签。在本文中,我们从图形信号处理(GSP)角度研究了该分类器学习问题。具体而言,通过将二元分类器视为高维特征空间中的分段常数图形信号,我们将分类器学习通过经典的最大后验(MAP)公式转换为信号恢复问题。与先前的图形信号恢复工作不同,我们还考虑了负权重的边表示样本之间的反相关性。一个不幸的后果是,图拉普拉斯矩阵$ \ mathbf {L} $可能是不确定的,并且先前为候选信号$提出的图信号平滑度在$ \ mathbf {x} ^ T \ mathbf {L} \ mathbf {x} $之前\ mathbf {x} $可以导致病理学上的解决。作为响应,我们通过对Haynsworth惯性加和公式的新颖应用,基于$ \ mathbf {L} $的最小特征值的快速下界计算,得出了最佳摄动矩阵$ \ boldsymbol {\ Delta} $- $ \ mathbf {L} + \ boldsymbol {\ Delta} $是正半确定的,从而产生稳定的先验信号。此外,我们没有为每个样本强制执行硬二进制决策,而是在图形上定义了促进平滑度的概念,该概念促进了分类器信号中的歧义。最后,我们提出了一种基于迭代最小二乘(IRLS)的算法,该算法可以有效地解决提出的MAP问题。大量的仿真结果表明,我们提出的算法明显优于使用正边缘图的SVM变体和基于图的分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号