首页> 外文OA文献 >A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains
【2h】

A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains

机译:一种用于研究马尔可夫亚稳性的图算法   链

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large continuous-time Markov chains with exponentially small transition ratesarise in modeling complex systems in physics, chemistry and biology. We proposea constructive graph-algorithmic approach to determine the sequence of criticaltimescales at which the qualitative behavior of a given Markov chain changes,and give an effective description of the dynamics on each of them. Thisapproach is valid for both time-reversible and time-irreversible Markovprocesses, with or without symmetry. Central to this approach are two graphalgorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of thecritical timescales and the hierarchies of Typical Transition Graphs orT-graphs indicating the most likely transitions in the system {without andwith} symmetry respectively. The sequence of {critical} timescales includes thesubsequence of the reciprocals { of the real parts } of eigenvalues. Under acertain assumption, we prove sharp asymptotic estimates for eigenvalues(including prefactors) and show how one can extract them from the output ofAlgorithm 1. We discuss the relationship between Algorithms 1 and 2, andexplain how one needs to interpret the output of Algorithm 1 if it is appliedin the case with symmetry instead of Algorithm 2. Finally, we analyze anexample motivated by R. D. Astumian's model of the dynamics of kinesin, amolecular motor, by means of Algorithm 2.
机译:在物理,化学和生物学的复杂系统建模中,大型连续时间马尔可夫链具有指数级的小跃迁速率。我们提出一种建设性的图算法方法,以确定给定马尔可夫链的质性行为发生变化的临界时间尺度的序列,并对每个动力学的​​动力学进行有效描述。此方法对于具有或不具有对称性的时间可逆和时间不可逆的马尔可夫过程均有效。该方法的核心是两个图形算法,算法1和算法2,用于分别获得关键时间尺度的序列和典型过渡图或T图的层次,这些过渡图分别指示系统中最可能发生的过渡(无对称性)。关键时间尺度的序列包括特征值的倒数{的实部}的子序列。在确定的假设下,我们证明了特征值(包括前置因子)的清晰渐近估计,并说明了人们如何从算法1的输出中提取出它们。我们讨论了算法1和2之间的关系,并解释了在以下情况下人们如何解释算法1的输出它是在对称情况下而不是在算法2中应用。最后,我们通过算法2分析了一个由RD Astumian模型驱动的分子动力学的分子动力学实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号