首页> 外文OA文献 >Discovering governing equations from data: Sparse identification of nonlinear dynamical systems
【2h】

Discovering governing equations from data: Sparse identification of nonlinear dynamical systems

机译:从数据中发现控制方程:稀疏识别   非线性动力系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to discover physical laws and governing equations from data isone of humankind's greatest intellectual achievements. A quantitativeunderstanding of dynamic constraints and balances in nature has facilitatedrapid development of knowledge and enabled advanced technological achievements,including aircraft, combustion engines, satellites, and electrical power. Inthis work, we combine sparsity-promoting techniques and machine learning withnonlinear dynamical systems to discover governing physical equations frommeasurement data. The only assumption about the structure of the model is thatthere are only a few important terms that govern the dynamics, so that theequations are sparse in the space of possible functions; this assumption holdsfor many physical systems. In particular, we use sparse regression to determinethe fewest terms in the dynamic governing equations required to accuratelyrepresent the data. The resulting models are parsimonious, balancing modelcomplexity with descriptive ability while avoiding overfitting. We demonstratethe algorithm on a wide range of problems, from simple canonical systems,including linear and nonlinear oscillators and the chaotic Lorenz system, tothe fluid vortex shedding behind an obstacle. The fluid example illustrates theability of this method to discover the underlying dynamics of a system thattook experts in the community nearly 30 years to resolve. We also show thatthis method generalizes to parameterized, time-varying, or externally forcedsystems.
机译:从数据中发现物理定律和控制方程的能力是人类最大的智力成就之一。对自然界中的动态约束和平衡的定量理解促进了知识的迅速发展并实现了包括飞机,内燃机,卫星和电力在内的先进技术成就。在这项工作中,我们将稀疏性促进技术和机器学习与非线性动力系统相结合,从测量数据中发现控制物理方程。关于模型结构的唯一假设是,只有少数几个重要的术语控制着动力学,因此方程在可能函数的空间中是稀疏的。这个假设适用于许多物理系统。特别是,我们使用稀疏回归来确定动态表示方程式中准确表示数据所需的最少术语。生成的模型是简约的,在避免复杂性的同时平衡了模型的复杂性和描述能力。从简单的经典系统(包括线性和非线性振荡器以及混沌的Lorenz系统)到障碍物后面的流体涡流,我们演示了该算法在各种问题上的应用。生动的例子说明了这种方法发现系统潜在动态的能力,该系统吸引了近30年的社区专家来解决。我们还表明,该方法可推广到参数化,时变或外部强制系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号