首页> 外文OA文献 >Properties of networks with partially structured and partially random connectivity
【2h】

Properties of networks with partially structured and partially random connectivity

机译:具有部分结构和部分随机的网络的属性   连接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We provide a general formula for the eigenvalue density of large random$N\times N$ matrices of the form $A = M + LJR$, where $M$, $L$ and $R$ arearbitrary deterministic matrices and $J$ is a random matrix of zero-meanindependent and identically distributed elements. For $A$ nonnormal, theeigenvalues do not suffice to specify the dynamics induced by $A$, so we alsoprovide general formulae for the transient evolution of the magnitude ofactivity and frequency power spectrum in an $N$-dimensional linear dynamicalsystem with a coupling matrix given by $A$. These quantities can also bethought of as characterizing the stability and the magnitude of the linearresponse of a nonlinear network to small perturbations about a fixed point. Wederive these formulae and work them out analytically for some examples of $M$,$L$ and $R$ motivated by neurobiological models. We also argue that thepersistence as $N\rightarrow\infty$ of a finite number of randomly distributedoutlying eigenvalues outside the support of the eigenvalue density of $A$, aspreviously observed, arises in regions of the complex plane $\Omega$ wherethere are nonzero singular values of $L^{-1} (z\mathbf{1} - M) R^{-1}$ (for$z\in\Omega$) that vanish as $N\rightarrow\infty$. When such singular values donot exist and $L$ and $R$ are equal to the identity, there is a correspondencein the normalized Frobenius norm (but not in the operator norm) between thesupport of the spectrum of $A$ for $J$ of norm $\sigma$ and the$\sigma$-pseudospectrum of $M$.
机译:我们为形式为$ A = M + LJR $的大随机$ N \乘以N $矩阵的特征值密度提供了一个通用公式,其中$ M $,$ L $和$ R $是任意确定性矩阵,而$ J $是零均值独立且分布均匀的元素的随机矩阵。对于非正常的$ A $,特征值不足以指定由$ A $引起的动力学,因此我们还为具有耦合矩阵的$ N $维线性动力学系统中的活动量和频率功率谱的瞬态演化提供了一般公式由$ A $给出。这些量也可以被认为是表征非线性网络对固定点周围小扰动的线性响应的稳定性和大小的特征。对这些公式进行推导,并针对神经生物学模型所激发的$ M $,$ L $和$ R $的一些示例进行分析性求解。我们还认为,如先前所观察到的那样,在有限元数A $的特征值密度的支持范围之外,有限数量的随机分布的外部特征值的持久性为$ N \ rightarrow \ infty $,出现在非零的复平面$ \ Omega $的区域中$ L ^ {-1}(z \ mathbf {1}-M)R ^ {-1} $($ z \ in \ Omega $)的奇异值消失为$ N \ rightarrow \ infty $。当这样的奇异值不存在并且$ L $和$ R $等于恒等式时,在规范化的Frobenius范数中(但在算子范数中)在$ A $的频谱对$ J $的支持之间存在对应关系。规范$ \ sigma $和$ \ sigma $-伪谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号