首页> 外文OA文献 >Semi-infinite optimization with sums of exponentials via polynomial approximation
【2h】

Semi-infinite optimization with sums of exponentials via polynomial approximation

机译:利用多项式求指数和的半无限优化   近似

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a general method for optimization with semi-infinite constraintsthat involve a linear combination of functions, focusing on the case of theexponential function. Each function is lower and upper bounded on sub-intervalsby low-degree polynomials. Thus, the constraints can be approximated withpolynomial inequalities that can be implemented with linear matrixinequalities. Convexity is preserved, but the problem has now a finite numberof constraints. We show how to take advantage of the properties of theexponential function in order to build quickly accurate approximations. Theproblem used for illustration is the least-squares fitting of a positive sum ofexponentials to an empirical density. When the exponents are given, the problemis convex, but we also give a procedure for optimizing the exponents. Severalexamples show that the method is flexible, accurate and gives better resultsthan other methods for the investigated problems.
机译:我们针对半无限约束提出了一种通用的优化方法,该方法涉及函数的线性组合,重点关注指数函数的情况。每个函数通过低次多项式在子区间上下限。因此,可以用可以用线性矩阵不等式实现的多项式不等式来近似约束。凸性得以保留,但是问题现在有了有限数量的约束。我们展示了如何利用指数函数的属性来快速建立精确的近似值。用于说明的问题是指数正和与经验密度的最小二乘拟合。当给出指数时,问题是凸的,但是我们也给出了优化指数的过程。几个例子表明,与其他方法相比,该方法灵活,准确,结果更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号