首页> 外文OA文献 >Exploiting Structure in Weighted Model Counting Approaches to Probabilistic Inference
【2h】

Exploiting Structure in Weighted Model Counting Approaches to Probabilistic Inference

机译:加权模型计数方法中的开发结构   概率推理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Previous studies have demonstrated that encoding a Bayesian network into aSAT formula and then performing weighted model counting using a backtrackingsearch algorithm can be an effective method for exact inference. In this paper,we present techniques for improving this approach for Bayesian networks withnoisy-OR and noisy-MAX relations---two relations that are widely used inpractice as they can dramatically reduce the number of probabilities one needsto specify. In particular, we present two SAT encodings for noisy-OR and twoencodings for noisy-MAX that exploit the structure or semantics of therelations to improve both time and space efficiency, and we prove thecorrectness of the encodings. We experimentally evaluated our techniques onlarge-scale real and randomly generated Bayesian networks. On these benchmarks,our techniques gave speedups of up to two orders of magnitude over the bestprevious approaches for networks with noisy-OR/MAX relations and scaled up tolarger networks. As well, our techniques extend the weighted model countingapproach for exact inference to networks that were previously intractable forthe approach.
机译:先前的研究表明,将贝叶斯网络编码为aSAT公式,然后使用回溯搜索算法执行加权模型计数可能是进行精确推断的有效方法。在本文中,我们提出了针对具有嘈杂或或嘈杂-MAX关系的贝叶斯网络改进此方法的技术,这两种关系在实践中被广泛使用,因为它们可以显着减少需要指定的概率数量。特别是,我们提出了两种用于噪声或的SAT编码和两种用于噪声MAX的编码,它们利用关系的结构或语义来提高时间和空间效率,并证明了编码的正确性。我们在大规模的真实和随机生成的贝叶斯网络上实验性地评估了我们的技术。在这些基准上,我们的技术比具有嘈杂OR / MAX关系的网络的最佳现有方法提速了两个数量级,并扩展到了更大的网络。同样,我们的技术将加权模型计数方法扩展为精确推断到以前对于该方法难以处理的网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号