首页> 外文OA文献 >BPRS: Belief Propagation Based Iterative Recommender System
【2h】

BPRS: Belief Propagation Based Iterative Recommender System

机译:BpRs:基于信念传播的迭代推荐系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we introduce the first application of the Belief Propagation(BP) algorithm in the design of recommender systems. We formulate therecommendation problem as an inference problem and aim to compute the marginalprobability distributions of the variables which represent the ratings to bepredicted. However, computing these marginal probability functions iscomputationally prohibitive for large-scale systems. Therefore, we utilize theBP algorithm to efficiently compute these functions. Recommendations for eachactive user are then iteratively computed by probabilistic message passing. Asopposed to the previous recommender algorithms, BPRS does not require solvingthe recommendation problem for all the users if it wishes to update therecommendations for only a single active. Further, BPRS computes therecommendations for each user with linear complexity and without requiring atraining period. Via computer simulations (using the 100K MovieLens dataset),we verify that BPRS iteratively reduces the error in the predicted ratings ofthe users until it converges. Finally, we confirm that BPRS is comparable tothe state of art methods such as Correlation-based neighborhood model (CorNgbr)and Singular Value Decomposition (SVD) in terms of rating and precisionaccuracy. Therefore, we believe that the BP-based recommendation algorithm is anew promising approach which offers a significant advantage on scalabilitywhile providing competitive accuracy for the recommender systems.
机译:在本文中,我们介绍了信仰传播(BP)算法在推荐系统设计中的首次应用。我们将推荐问题表述为推理问题,旨在计算代表待预测等级的变量的边际概率分布。但是,计算这些边际概率函数对于大型系统而言是计算禁止的。因此,我们利用BP算法来有效地计算这些函数。然后,通过概率消息传递来迭代计算每个活动用户的建议。与以前的推荐程序算法相反,如果BPRS仅希望为单个活动用户更新建议,则不需要为所有用户解决推荐问题。此外,BPRS无需复杂度,即可线性复杂地为每个用户计算推荐值。通过计算机仿真(使用100K MovieLens数据集),我们验证BPRS迭代地减少了用户的预测收视率误差,直到收敛为止。最后,我们确认BPRS在评级和精度准确性方面可与现有方法(例如基于相关的邻域模型(CorNgbr)和奇异值分解(SVD))相媲美。因此,我们认为基于BP的推荐算法是一种新的有前途的方法,它在可伸缩性上提供了显着的优势,同时为推荐系统提供了竞争性的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号