首页> 中文期刊> 《西华大学学报(自然科学版)》 >基于近邻传播聚类的混合推荐系统

基于近邻传播聚类的混合推荐系统

     

摘要

协同过滤技术是推荐系统最具价值的核心技术之一,它能够深入地挖掘用户潜在的兴趣爱好并向用户做出比较合理的推荐;但是冷启动、数据稀疏性、可扩展性等问题依然制约该技术在实际推荐系统的应用。针对冷启动和数据稀疏性等问题,文章提出了一个基于近邻传播聚类的混合协同过滤推荐模型。该模型首先基于物品的标签属性进行聚类,挖掘出同类的物品并计算相似物品之间的关联程度,然后基于历史交互数据计算物品的相似度矩阵,最后按照一定权重混合构成一个物品相似度,并以此为用户进行推荐。与传统协同过滤推荐模型相比,该模型不仅提高了推荐精确度,而且改善了物品的召回率,能为用户提供更好的推荐体验。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号