首页> 外文OA文献 >On Zero Divisors with Small Support in Group Rings of Torsion-Free Groups
【2h】

On Zero Divisors with Small Support in Group Rings of Torsion-Free Groups

机译:关于无扭转群环中小支持的零除数   组

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kaplanski's Zero Divisor Conjecture envisions that for a torsion-free group Gand an integral domain R, the group ring R[G] does not contain non-trivial zerodivisors. We define the length of an element a in R[G] as the minimalnon-negative integer k for which there are ring elements r_1,...,r_k in R andgroup elements g_1,...,g_k in G such that a = r_1 g_1+...+r_k g_k. Weinvestigate the conjecture when R is the field of rational numbers. By areduction to the finite field with two elements, we show that if ab = 0 fornon-trivial elements in the group ring of a torsion-free group over therationals, then the lengths of a and b cannot be among certain combinations.More precisely, we show for various pairs of integers (i,j) that if one of thelengths is at most i then the other length must exceed j. Using combinatorialarguments we show this for the pairs (3,6) and (4,4). With a computer-assistedapproach we strengthen this to show the statement holds for the pairs (3,16)and (4,7). As part of our method, we describe a combinatorial structure, whichwe call matched rectangles, and show that for these a canonical labeling can becomputed in quadratic time. Each matched rectangle gives rise to a presentationof a group. These associated groups are universal in the sense that there is nocounterexample to the conjecture among them if and only if the conjecture istrue over the rationals.
机译:卡普兰斯基的零除数猜想设想到,对于无扭转群G和积分域R,群环R [G]不包含非平凡的零除数。我们将R [G]中元素a的长度定义为最小非负整数k,R中存在环元素r_1,...,r_k,G中存在组元素g_1,...,g_k,使得a = r_1 g_1 + ... + r_k g_k。当R是有理数域时,我们研究猜想。通过对具有两个元素的有限域的归纳,我们表明,如果无扭组的环上非平凡元素的ab = 0大于有理数,则a和b的长度就不能在某些组合中。我们针对各种成对的整数(i,j)显示,如果长度之一最大为i,则另一个长度必须超过j。使用组合参数,我们针对(3,6)和(4,4)对显示了这一点。通过计算机辅助方法,我们对此进行了增强,以显示语句对(3,16)和(4,7)成立。作为方法的一部分,我们描述了一种组合结构,称为匹配矩形,并表明对于这些组合,可以在二次时间内计算出规范的标记。每个匹配的矩形都产生一个组的表示。这些关联群体具有普遍意义,即当且仅当猜想在理性上是正确的时,它们之间才没有反例。

著录项

  • 作者

    Schweitzer, Pascal;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号