首页> 外文OA文献 >Joint Image Restoration and Segmentation using Gauss-Markov-Potts Prior Models and Variational Bayesian Computation: Technical Details
【2h】

Joint Image Restoration and Segmentation using Gauss-Markov-Potts Prior Models and Variational Bayesian Computation: Technical Details

机译:使用Gauss-markov-potts先验的联合图像恢复和分割   模型和变分贝叶斯计算:技术细节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a method to restore and to segment simultaneously images degradedby a known point spread function (PSF) and additive white noise. For thispurpose, we propose a joint Bayesian estimation framework, where a family ofnon-homogeneous Gauss-Markov fields with Potts region labels models are chosento serve as priors for images. Since neither the joint maximum a posterioriestimator nor posterior mean one are tractable, the joint posterior law of theimage, its segmentation and all the hyper-parameters, is approximated by aseparable probability laws using the Variational Bayes technique. This yields aknown probability laws of the posterior with mutually dependent shapingparameter, which aims to enhance the convergence speed of the estimatorcompared to stochastic sampling based estimator. The main work is descriptionis given in [1], while technical details of the variational calculations arepresented in the current paper.
机译:我们提出一种方法来还原和分割同时被已知点扩散函数(PSF)和加性白噪声降解的图像。为此,我们提出了一个联合贝叶斯估计框架,其中选择了一个具有Potts区域标签模型的非均匀高斯-马尔可夫场族作为图像的先验。由于关节后验刺激最大值和后均均值均不易处理,因此图像的关节后验定律,其分割和所有超参数均使用变分贝叶斯技术通过可分解的概率定律来近似。这产生了具有相互依赖的整形参数的后验概率定律,旨在与基于随机采样的估计器相比,提高估计器的收敛速度。主要的工作在[1]中给出了描述,而变分计算的技术细节在本文中有介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号