首页> 外文期刊>Image Processing, IEEE Transactions on >Joint NDT Image Restoration and Segmentation Using Gauss–Markov–Potts Prior Models and Variational Bayesian Computation
【24h】

Joint NDT Image Restoration and Segmentation Using Gauss–Markov–Potts Prior Models and Variational Bayesian Computation

机译:使用高斯-马尔可夫-珀茨先验模型和变分贝叶斯计算的联合NDT图像恢复和分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a method to simultaneously restore and to segment piecewise homogeneous images degraded by a known point spread function (PSF) and additive noise. For this purpose, we propose a family of nonhomogeneous Gauss–Markov fields with Potts region labels model for images to be used in a Bayesian estimation framework. The joint posterior law of all the unknowns (the unknown image, its segmentation (hidden variable) and all the hyperparameters) is approximated by a separable probability law via the variational Bayes technique. This approximation gives the possibility to obtain practically implemented joint restoration and segmentation algorithm. We will present some preliminary results and comparison with a MCMC Gibbs sampling based algorithm. We may note that the prior models proposed in this work are particularly appropriate for the images of the scenes or objects that are composed of a finite set of homogeneous materials. This is the case of many images obtained in nondestructive testing (NDT) applications.
机译:在本文中,我们提出了一种方法,用于同时恢复和分割因已知点扩散函数(PSF)和加性噪声而退化的分段均质图像。为此,我们提出了一个具有Potts区域标签模型的非均匀高斯-马尔可夫场族,用于在贝叶斯估计框架中使用的图像。通过变分贝叶斯技术通过可分离的概率定律近似所有未知数(未知图像,其分割(隐藏变量)和所有超参数)的联合后验定律。这种近似为获得实际实现的联合恢复和分割算法提供了可能性。我们将介绍一些初步结果,并与基于MCMC Gibbs采样的算法进行比较。我们可能会注意到,这项工作中提出的现有模型特别适用于由有限的一组均质材料组成的场景或物体的图像。这是在无损检测(NDT)应用程序中获得的许多图像的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号